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We report on the analysis and prototype-characterization of a dual-electrode

electro-optic modulator that can generate both amplitude and phase modula-

tions with a selectable relative phase, termed a universally tunable modulator

(UTM). All modulation states can be reached by tuning only the electrical

inputs, facilitating real-time tuning, and the device is shown to have good sup-

pression and stability properties. A mathematical analysis is presented, includ-

ing the development of a geometric phase representation for modulation. The

experimental characterization of the device shows that relative suppressions of

38 dB, 39 dB and 30 dB for phase, single-sideband and carrier-suppressed

modulations, respectively, can be obtained, as well as showing the device

is well-behaved when scanning continuously through the parameter space of

modulations. Uses for the device are discussed, including the tuning of lock

points in optical locking schemes, single sideband applications, modulation

fast-switching applications, and applications requiring combined modulations.

c© 2003 Optical Society of America

OCIS codes: 230.0230, 230.4110, 230.2090, 230.5440, 230.0250

1. Introduction

Although electro-optic amplitude modulators and phase modulators are commonplace

in modern optics laboratories, there is no single, commercially available device that

produces controllable amplitude and phase modulations with complete variability.

When required, various optical configurations have been assembled, such as phase and

amplitude modulators in series,1 and two phase modulators used in a Mach-Zehnder
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interferometric setup (the Mach-Zehnder modulator),2 which are both capable of

amplitude and phase modulation.

The device discussed in this paper, called a universally tunable modulator (UTM),

is a modification of a commercial electro-optic amplitude modulator. An amplitude

modulator consists of two phase-modulation crystals aligned at right angles, and con-

nected with opposite polarities to a single electrical input. A UTM (see Fig. 1(a))

is identical, but with two separate inputs, one connected to each crystal. A proto-

type was constructed from a New Focus broadband amplitude modulator (Model

4104) in this way. We demonstrate here that this extra degree of freedom enables the

production of phase as well as amplitude modulation.

We use the term ”universally tunable” to highlight the fact that the device is

capable of both amplitude modulation (AM) and phase modulation (PM), with full

selectability of the amplitude of each and of the relative phase between the two.

Choosing a figure of merit with which to assess the device is difficult in general, and

depends on the modulation requirements of the application in question. We address

this issue here by identifying two characteristics that might be expected of the mod-

ulations states produced by the device: variability and purity. The variable nature

of the device is brought out by experiments which require real-time tuning of the

modulator across its parameter space. Other experiments rely on precise selection of

a small number of operating points, where the purity of the modulations produced

has a direct influence on the success of the experiment.

One anticipated use for the UTM device is in optical feedback control of the

resonance condition of a Fabry-Perot cavity, or the fringe condition of a Michelson
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interferometer. The RF modulation techniques used to lock these devices are Pound-

Drever-Hall locking3 and Schnupp modulation locking,4 respectively, and are both

based on properties of the devices that convert (injected) PM to AM, which is then

demodulated to give an error signal readout. In both cases, the default locking point

is at a turning point in the transmitted (or reflected) optical field intensity; injection

into the device of additional AM (along with the default PM) causes the device to lock

with an offset relative to the turning point. Moreover, the quadrature of AM required

for Pound-Drever-Hall locking is orthogonal to that required for Schnupp modulation

locking, introducing the possibility of independently tuning two lock points at once

in a coupled system. This RF offset locking application is our case study example to

demonstrate the variability property of a prototype UTM; the technique may be useful

for future large-scale gravitational wave detector configurations,5 with the feature of

facilitating real-time tuning of detector frequency responses.6,7, 8

The UTM device is capable of several ”pure” states, which have various applica-

tions as well as providing a natural way to test the purity property of the prototype.

Single-sideband modulation, for example, requires an equal combination of AM and

PM, in quadrature. The subject has arisen a number of times with optic fibre technol-

ogy where, for example, a single-sideband-modulated signal is immune to fibre disper-

sion penalties,2 and the technique has also been suggested for subcarrier-multiplexing

systems.9 Single-sideband modulation has been achieved by other means: optically fil-

tering out one sideband;10 cascaded amplitude and phase modulators;1 Mach-Zehnder

modulators;2 and more complex arrangements.11 While these methods have merit, we

submit that the UTM is far simpler in design, with fewer degrees of freedom available
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to drift, and is at least comparable regarding suppression capabilities.

The UTM can produce PM or AM states, with purity limited by the accuracy

of polarisation optics (including the birefringent effects of the device itself). While

these states are obtainable using off-the-shelf amplitude or phase modulators, appli-

cations in coherent state quantum cryptography require fast-switching between AM

and PM,12 for which the UTM is ideal. Other applications, including some quantum

communication protocols,13 would also benefit from having easy access to a tuned,

stationary combination of AM and PM. In addition, we show that the UTM (or in-

deed an amplitude modulator) can produce a carrier suppression state, where the

output consists only of two modulation sidebands.

We have developed a geometric phase sphere description of modulation states,

the modulation sphere formulation, in analogy with the Poincaré sphere description

for polarisation states.14 We demonstrate the use of this formalism by calculating

the transfer function (electrical to optical) of the UTM device, both using optical-

field-phasors and using modulation sphere parameters, and discuss the pros and cons

of the two mathematical descriptions. We have found that the modulation sphere

representation is particularly useful for gaining a visual insight into the dynamics of

the UTM.

Section 2 gives the mathematical description of the UTM, in terms of optical-

field-phasors (Section 2B), and the modulation sphere formulation (Section 2C). The

transfer functions from these two subsections are derived in Appendices A and B

respectively. Section 3 describes a characterisation experiment conducted on a pro-

totype UTM, with the experimental layout described in Section 3B, and the results
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presented in Section 3C. The main results of the study are summarised in Section 4.

2. Theoretical Model

A. Overview

Before we proceed, a simple analogy may help to clarify the inner workings of a

UTM device, and lend physical insight. A Mach-Zehnder modulator involves split-

ting a beam into two parts, separately phase-modulating each part, then recombining

the two parts on a beamsplitter. The UTM is physically equivalent to this, where

the two interferometer paths are collinear but different in polarisation. Each UTM

crystal modulates one and only one polarisation component. The phase between the

electric fields in the two polarisation states we identify as the interferometric recom-

bination phase. The birefringent waveplates used to create the initial polarisation

take the place of the input beamsplitter, and a polarising beamsplitter facilitates the

output recombination. The recombination phase is adjustable (by modifying the po-

larisation state), and one can control the amplitudes and phases of the single-beam

phase-modulations generated by each of the two crystals. Through manipulation of

these input parameters, the user has complete control over the interference condition

of the two carrier beams, and separately over the interference of the lower and upper

sidebands generated by the modulating crystals. This amounts to having complete

freedom to choose any modulation state by appropriate choice of the input parame-

ters.

As an example, consider two identically phase-modulated beams, where the op-

tical phase of one beam is advanced by 90◦, and the modulation phase of the other
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beam is advanced by 90◦. The result, upon interfering the two beams, is that one

resultant sideband is exactly cancelled out and the other is additively reinforced, pro-

ducing a single sideband state. One can intuitively arrive at all of the modulation

states discussed in this paper by reasoning along these lines. In the next section, we

quantify such reasoning into a mathematical theory of the UTM.

B. UTM Transfer Function

As stated earlier, a UTM (see Fig. 1(a)) consists of two modulating crystals in series,

with separate voltage sources, and with modulating axes at right angles to each other.

The UTM is used by sending a laser beam of elliptical polarisation through the system,

and then through a linearly polarising filter angled at 45◦ to the crystals’ modulating

axes.

The choice of polarisation state of the incident beam has a crucial effect on the

transfer characteristics of the system. We will restrict ourselves to a subset of polari-

sation states: those where there is equal power in the polarisation components aligned

with each modulating crystal axis. Equivalently, we require that the polarisation is

elliptical with major and minor axes aligned at 45◦ to both crystal axes. For con-

creteness we will choose the ellipse axes to be horizontal and vertical, and the crystal

axes to be left and right diagonal (as in Fig. 1(a)). We define the angle σ as being the

phase difference between left-diagonal and right-diagonal electric field components of

the light exiting the crystals (see Fig. 1(b)). The identity

tan2(
σ

2
) =

Ph

Pv

(1)

follows, where Ph,v are the powers in the horizontal and vertical polarisation compo-
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Fig. 1. (a) UTM schematic. Two modulating crystals are positioned in series with modulat-

ing axes at 90o. A laser beam of elliptical polarisation passes through each crystal and then

through a vertically polarising element. (b) The subset of input beam polarisation states

considered here is all states such that there is an equal optical field amplitude in both the

left- and right-diagonal components. σ equals the phase between these components: shown

are σ = 0 (vertical), π/4, π/2 (circular), 3π/4, and π (horizontal). (c) Phasor diagram rep-

resenting the transfer function given by Eq. 3. If the input electrical signals are represented

as rotating phasors (δ̃1 and δ̃2), then the corresponding phasors that represent the output

phase and amplitude modulations (P̃ and Ã) are proportional to their sum and difference

respectively.

nents of the input laser beam. We introduce this degree of freedom with the appli-

cation of gravitational wave detector locking schemes in mind, where laser power is

at a premium: choosing σ such that the beam is almost vertically polarised allows

us to retain the majority of the input carrier power, while retaining full access to all
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modulation states, albeit with reduced amplitude.

Note that, in the ideal situation where both crystals have identical refractive

indices and lengths, the phase angle σ (and hence the polarisation state) is the same

before and after the modulator. However, a real device almost certainly does not

have identical crystals so that the relative phase between left- and right-diagonal

components may well be changed by the crystals, in which case σ should describe the

polarisation state of the light exiting the modulator, just before it reaches the linearly

polarising filter.

The inputs to the two crystal electrodes are sinusoidal voltages of frequency ωm;

we describe these as complex phasors δ̃j = δje
iφj (j = 1, 2, and i =

√
−1) so that the

single-crystal phase modulations are given by <{δ̃je
iωmt} = δjcos(ωmt + φj), where <

and = respectively return the real and imaginary components of a complex variable.

We can similarly write the output phase and amplitude modulations as complex

phasors P̃ = P eiφP and Ã = A eiφA where the optical field amplitude exiting the

UTM can be shown to be:

EOUT = EIN

[
cos(σ/2) + i<{P̃ eiωmt}+ <{Ãeiωmt}

]
= EIN [ cos(σ/2) + iP cos(ωmt + φP ) + Acos(ωmt + φA) ] (2)

where EIN is the input optical field amplitude. In Eq. 2, we have assumed small single-

crystal modulation depths (δj � 1), and we have factored away the net optical phase

dependence.

The relationship between input and output parameters for the UTM device can
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be shown to be:

P̃ =
1

2
cos
(σ

2

)(
δ̃1 + δ̃2

)
Ã =

1

2
sin
(σ

2

)(
δ̃1 − δ̃2

)
. (3)

(A proof of this transfer function is outlined in Appendix A.)

An important observation from Eq. 3 is that the phases of the AM and PM track

the phases of the sum and difference of the electrical signals, respectively. Thus, an

electronic oscillator for use in demodulation schemes is readily available, and can be

calibrated once for all operating points. This phase-tracking property holds for any

choice of σ; the effect of a change of polarisation ellipticity is to change the overall

quantity of PM or AM available (as well as changing the overall beam power in Eq. 2).

Returning briefly to the topic of conserving as much carrier power as possible for

gravitational wave detector applications, we derive a useful rule-of-thumb for selecting

an appropriate amount of power to tap off. Consider Eq. 3 when we set δ̃1 = iδ̃2 such

that δ̃1 + δ̃2 and δ̃1− δ̃2 have the same magnitude (we do this in order to focus on the

coefficients of the complex δ̃j phasors). The ratio of modulation power between the

AM and PM components is |Ã|2/|P̃ |2 = tan2(σ/2) and, comparing this with Eq. 1,

we have:

|Ã|2

|P̃ |2
=

Ph

Pv

(4)

So, the fraction of power tapped off is directly proportional to the fraction of modula-

tion power available to be expressed as AM (rather than PM). Typically then, if 10%

of the output power is tapped off, and the user wishes to alternately produce a pure

PM state and then a pure AM state (each of the same modulation power), then the
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AM state will require 9 times the input electrical power in compensation, compared

to the PM state.

It is apparent from Eqs. 2 and 3 that for σ = π the carrier and the PM con-

tribution vanish, leaving only the AM component. This is the carrier suppression

operating point, where only two sidebands remain. The modulation ceases to be of

the phase or amplitude type due to the absence of a carrier as a phase reference,

though the modulation retains its beat phase through the second harmonic in optical

power.

A rearrangement of Eq. 2 serves to clarify the nature of single sideband modula-

tion:

EOUT = EIN

[
cos(σ/2) +

1

2

(
Ã + iP̃

)
eiωmt +

1

2

(
Ã− iP̃

)∗
e−iωmt

]
(5)

where the e±iωmt terms represent optical sidebands at ±ωm relative to the optical

carrier frequency, and an asterisk denotes a complex conjugate. It is clear then that

choosing Ã = ±iP̃ eliminates one or other of the sidebands. In other words, a single

sideband state corresponds to having equal amounts of PM and AM where the two

modulations are in quadrature.

C. Modulation Sphere Formulation

We now define a geometric phase representation of the modulation parameters of

the system to further clarify the transfer characteristics of the UTM device. This

is analogous to using Stokes parameters and the Poincaré sphere representation for

optical polarisation states.14 In this case, we transform from the complex quantities P̃
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and Ã to a set of (real) coordinates (M1, M2, M3) in M-space via the transformation:

M1 = P 2 − A2

M2 = 2PAcos(φP − φA) = 2<{P̃ Ã∗}

M3 = 2PAsin(φP − φA) = 2={P̃ Ã∗} (6)

A single point in M-space represents a distinct modulation state. In particular,

the M-space representation suppresses the common (beat) phase of the modulation

state; the equations are defined in terms of the relative phase difference between AM

and PM contributions. This is a useful simplification in that now every physically

distinct modulation corresponds to one point and one only. On the other hand, one

cannot use the representation for demodulation-phase-tracking calculations, when the

physical significance of the modulation’s overall phase is renewed by the presence of

an external (electrical) phase reference.

The three M-space parameters can be interpreted as follows: M1 measures the

extent to which one kind of modulation (AM or PM) dominates over the other; M2

measures the degree to which the present PM and AM components are correlated

or anti-correlated in phase; and M3 measures the degree to which the present PM

and AM components are in quadrature phase to each other, and thus also measures

the extent to which one frequency sideband has more power than the other. We also

define the modulation power by M0 = P 2 + A2, from whence M2
0 = M2

1 + M2
2 + M2

3

follows. Therefore, a surface of constant M0 is a sphere in M-space (see Fig. 2(b)).

We attach particular significance to modulation states whose M-space coordinates

lie on one cardinal axis. The point (+M0, 0, 0) represents pure PM, and the point
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(−M0, 0, 0) represents pure AM. The points (0,±M0, 0) represent correlated and anti-

correlated PM and AM, and (0, 0,±M0) represent upper and lower single sideband

states. Details of these states are summarised in Table C. These states, particularly

those on the M1 and M3 axes, involve the suppression of a particular signal, and so

provide a natural way to test the precision of a real device.

Operating point Modulations Electrical Inputs M-space Q-space

Pure PM P̃ 6= 0, Ã = 0 δ̃1 = δ̃2 (+M0, 0, 0) (0, 4M0
cos(σ)+1

, 0)

Pure AM P̃ = 0, Ã 6= 0 δ̃1 = δ̃2eiπ (−M0, 0, 0) (0, 4M0
cos(σ)−1

, 0)

Correlated PM & AM P̃ = Ã δ̃1cos(σ) = δ̃2eiπ(1 + sin(σ)) (0, +M0, 0) ( 4M0
sin(σ)

,− 4M0cos(σ)

sin2(σ)
, 0)

Anticorrelated PM & AM P̃ = Ãeiπ δ̃1(1 + sin(σ)) = δ̃2eiπcos(σ) (0,−M0, 0) (− 4M0
sin(σ)

,− 4M0cos(σ)

sin2(σ)
, 0)

Single sideband −ωm P̃ = Ãeiπ/2 δ̃1 = δ̃2ei(π+σ) (0, 0, +M0) (0,− 4M0cos(σ)

sin2(σ)
,− 4M0

sin(σ)
)

Single sideband +ωm P̃ = Ãe−iπ/2 δ̃1 = δ̃2ei(π−σ) (0, 0,−M0) (0,− 4M0cos(σ)

sin2(σ)
, 4M0
sin(σ)

)

Table 1. Details of significant operating points. The modulation parameters,

expressed both in terms of phasors and M-space parameters, are given for

each point. The electrical inputs required to produce these operating points

are also given (both in terms of phasors and Q-space parameters), and these

inputs vary with the polarisation parameter σ.

Before we proceed, it is convenient to define an analogous Q-space representation,

(Q1, Q2, Q3), for the electrical input parameters, via:

Q1 = δ2
1 − δ2

2

Q2 = 2δ1δ2cos(φ1 − φ2) = 2<{δ̃1δ̃
∗
2}

Q3 = 2δ1δ2sin(φ1 − φ2) = 2={δ̃1δ̃
∗
2} (7)

where Q0 = δ2
1 + δ2

2 =
√

Q2
1 + Q2

2 + Q2
3 is the sum input electrical power. Physical
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interpretations for these parameters correspond with the M-space equivalents (see

Fig. 2(a) for a diagrammatic description).

Now, we can rewrite the UTM transfer function, Eq. 3, in terms of the M-space

and Q-space parameters:

M0 =
1

4
(Q0 + Q2cos(σ))

M1 =
1

4
(Q0cos(σ) + Q2)

M2 =
1

4
sin(σ)Q1

M3 = −1

4
sin(σ)Q3 (8)

(A proof of this transfer function is outlined in Appendix B.)

Since the modulation power M0 depends partly on Q2 (and hence depends on the

detail of the input signals, not just the overall input power Q0), a sphere of constant

electrical input power in Q-space does not, in general, map to a sphere of constant

modulation power in M-space. In fact, Eq. 8 describes a transfer function from a sphere

in Q-space to an ellipsoid in M-space. It can be shown that the ellipsoid is centered

at (M1, M2, M3) = (Q0cos(σ)/4, 0, 0), has radii [Q0/4, Q0sin(σ)/4, Q0sin(σ)/4], and

has an eccentricity of ε = |cos(σ)|. The ellipse is always prolate with long axis aligned

with the M1-axis, and always has one focus at the M-space origin. The orthogonality

of axes is preserved in the transformation, which consists only of a translation (the

ellipsoid is not origin-centered) and a dilation (the ellipsoid is squashed in the M2 and

M3 directions). The centrepoint and proportions of the ellipsoid are parametrised by

the input light’s polarisation parameter, σ (see Fig. 2(c)).

A special case occurs for σ = π/2 (circular input polarisation), when Eq. 8 reduces
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to:

M0 =
1

4
Q0

M1 =
1

4
Q2

M2 =
1

4
Q1

M3 = −1

4
Q3 (9)

Here, a sphere in Q-space maps to a sphere in M-space. This case is particularly

instructive as Figs. 2(a) and 2(b) take on a new significance: there is now a direct

graphical correspondence between the two spheres, in accordance with Eq. 9. So, as

an example of using these spheres as a visual tool, we can see ”at a glance” that

the PM operating point is obtained by running both crystals with equal in-phase

electrical inputs, or that a single sideband is obtained by running both crystals with

equal inputs in quadrature.

3. Experimental Demonstration

A. Approach

The following characterisation experiment was designed to measure the amplitude

and phase response of a prototype UTM device with respect to both the AM and

PM output states. In particular, we focus here on two kinds of measurement: those

that measure the variability of the UTM device, and those that measure the purity

of the modulations that the UTM device can produce. By variability, we refer to the

capability of the UTM prototype to tune around the parameter space of modulations,

or ”dial up” a particular modulation, in a predictable, theory-matching fashion and
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with a reasonable level of precision. By purity, we speak of the UTM prototype’s

ability to accurately attain a particular modulation (especially those that involve

suppression of a frequency line) and to hold that modulation indefinitely without

drifting.

B. Experimental Layout

The experiment is shown in Fig. 3. The polarisation of a laser source was prepared with

a half- and quarter-wave plate in series, and the laser source was passed through the

UTM, which we operated at ωm/2π = 5 MHz. A polarising beam splitter completed

the process; the vertically polarized output carried the modulation described in the

theory above.

The horizontally polarised output was used to keep track of the polarisation

state, and hence to measure the value of σ. The polarisation state used corresponded

to σ = 75◦ (near-circular polarisation with the vertical component stronger), for

experimental convenience.

Regarding the modulator itself, the original New Focus amplitude modulator

(Model 4104) carried the specification: max Vπ = 300 V @ 1.06µm. While we did not

explicitly measure Vπ for the prototype UTM (after the modification from the original

AM device), we point out that it should still be of the same order of magnitude.

Therefore, since the input voltages used did not exceed 10 V, the following results are

in the small modulation depth limit as described in Section 2B.

A heterodyne detection scheme formed part of the measurement apparatus, where

a shunted beam was frequency-shifted by ωh/2π = 80 MHz with an acousto-optic
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modulator (AOM). If this heterodyne oscillator beam is represented by EHET =

γEINeiωht with γ � 1 and is interfered with the modulated beam from Eq. 2, then

the detected power is given by:

PDET = E2
IN [PDC + Pωm + Pωh

+ Pωh−ωm + Pωh+ωm ] ;

PDC = cos2(
σ

2
);

Pωm = 2cos(
σ

2
)<{Ãeiωmt};

Pωh
= 2cos(

σ

2
)<{γeiωht};

Pωh−ωm = 2<
[
γ(Ã + iP̃ )∗ei(ωh−ωm)t

]
;

Pωh+ωm = 2<
[
γ(Ã− iP̃ )ei(ωh+ωm)t

]
(10)

where the power components are split up according to their respective frequencies.

Pωm represents the measurable beat due to the presence of AM, Pωh
is the beat

between the carrier and the heterodyne oscillator, and Pωh−ωm and Pωh+ωm represent

heterodyned copies of the two modulation sidebands. A spectrum analyser was used

to monitor the strength of these frequency lines. The use of the spectrum analyser

facilitated the assessment of the purity of states produced by the UTM prototype, by

observing operating points that involved suppression of one of these frequency lines.

An alternative set of measurables was obtained by electronically mixing the het-

erodyne frequencies down to baseband via a double-demodulation scheme. This gave

a DC readout of the PM and AM amplitudes at a selected beat phase. A complete

description of the modulation strengths and quadratures was obtained in this way,

and was hence useful to characterise the variability of the UTM prototype.

The method of signal extraction via double demodulation is best understood by
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reworking the last two components of Eq. 10 to:

Pωh−ωm + Pωh+ωm = 2cos(
σ

2
)
[
<{P̃ eiωmt}={γeiωht}+ <{Ãeiωmt}<{γeiωht}

]
(11)

This signal is mixed down to base band by demodulating at ωh/2π = 80 MHz and

then ωm/2π = 5 MHz in series. The output of a demodulation is sensitive to the rela-

tive phases of the signals being mixed: if they are exactly in-phase or out-of-phase, the

output will be maximally positive or negative; if they are in quadrature, the output

will be zero. Eq. 11 shows that the ωh oscillator components of the AM and PM por-

tions are orthogonal (one is the real component, the other is imaginary) so that the

appropriate choice of electrical oscillator phase can force the readout of PM only, or

AM only, or some linear combination of the two. Similarly, the demodulation quadra-

ture of the ωm stage determines the beat phase that the output signal is projected

onto.

The output DC component of the first stage of demodulation (extracted with a

bias-T component) was used as an error signal for locking the optical recombination

phase of the heterodyne. This error signal varies sinusoidally with respect to the

optical recombination phase, with a zero crossing where the optical heterodyne beat

(Pωh
) and the electronic demodulation oscillator are in quadrature. In other words,

the feedback loop ”locks out” the heterodyne beat. Comparing Eq. 10 and Eq. 11, we

see that the AM term has the same phase as the Pωh
term (that is, they both contain

the terms <{γeiωht}), so that the feedback loop also locks out the AM component of

modulation, leaving only the PM component (which has a ={γeiωht} term). This is

an important part of the process as, without a locking loop, the demodulation phase
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of the circuit would be uncharacterised, and would also be free to drift.

In the experiment, two separate double demodulation schemes were used in order

to measure PM and AM simultaneously; the ωh signal was split with a 90o electronic

splitter to ensure that the two double demodulation circuits scanned orthogonal mod-

ulations. Hence, when the heterodyne locking loop was connected using a signal from

one double-demodulation circuit, this ensured that that particular circuit was sensi-

tive to PM and that the other was sensitive to AM.

Regarding the second stage of demodulation, electronically phase locking the

signal generators was sufficient to time-stabilise the demodulation quadrature, and a

known modulation was used for calibration.

C. Results

Fig. 4 shows spectrum analyser traces for four operating points, to demonstrate the

suppression capabilities of the device. The suppression factors are 34.9 dB and 39.5 dB

for the left- and right-hand sidebands (Fig. 4(a) and Fig. 4(b)). The figures shown

suppress the frequency lines down to the electronic noise floor, so that higher suppres-

sion factors may be possible. A more detailed trace exhibiting sideband suppression

is given in Fig. 5, with 35.2 dB relative suppression recorded.

We measured around 38 dB suppression of the AM beat compared with a similar-

input-power pure-AM state (Fig. 4(c)). In this and the other diagrams in Fig. 4,

we have shown ”max-hold” data, demonstrating that the device is highly stable,

maintaining these operating points without significant drift on the timescale of hours.

In Fig. 4(d), the carrier is suppressed by selecting the AM operating point and
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setting σ = π (horizontal polarisation). The heterodyne measurement of the carrier

is down by around 30 dB, from which we can infer that the carrier power (which goes

as the square of the heterodyne measurement) is down by 60 dB. This heterodyne

measurement is further supported by observing that the first and second harmonics

of direct AM beat are approximately equal, which is consistent with the fact that

the carrier (as measured by the heterodyne) is approximately 6 dB weaker than the

sidebands.

We were especially careful to validate this heterodyne measurement of the carrier,

because the directly detected power only dropped by 40 dB. The reason for this is

that the majority of the residual carrier power was now in a higher-order, odd spatial

mode (easily verified by looking at the intensity profile of the beam), which did not

interfere efficiently with the heterodyne oscillator beam. The higher-order modes were

thought to result from a spatially non-uniform polarisation of the light exiting the

UTM which, when subsequently passed through a polarising beam splitter, produced

modes reflecting the symmetry of the modulator. As such, for applications where

spatial mode interference is important, the employment of a mode-cleaner cavity with

free spectral range equal to the modulation frequency (or one of its integer divisors)

should solve the problem.

In an attempt to confirm the variability of the UTM prototype, we endeavoured

to map significant paths in the modulation parameter space. Fig. 6 and Fig. 7 show

the result of sweeping through M-space in two cardinal directions: varying the relative

phase between the two (constant amplitude) electrical signals; and varying the ampli-

tude of one electrical signal while keeping the other signal amplitude, and the relative
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phase, constant. For matters of calibration, the UTM was initially set to the PM

operating point (this initial state was used as the reference in labelling ”in-phase”

and ”quadrature” components), and the relative gains and phases of the two dou-

ble demodulation circuits were measured and factored out via correspondence with

spectrum analyser data. The input polarisation was set to be elliptical with a verti-

cal component slightly larger than the horizontal component. The results show that

changing the phase between the two electrical signals produces AM in quadrature to

the original PM, whereas changing the amplitude of one electrical signal generates

AM in-phase with the original PM. The data points are generally in good agreement

with the theoretical predictions. Some small systematic errors are apparent, and are

thought to be associated with unmatched electrical and optical impedances between

the two crystals, and possibly to do with slightly unmatched optical power levels

probing each crystal (ie a violation of our original assumption regarding polarisa-

tion states). Overall, the device is shown to be highly predictable, and that one can

”dial-up” a particular modulation state on call, having calibrated the device initially.

It is instructive to notice that the cardinal operating points are not evenly spaced

when sweeping across the parameter space. In particular, we see that the two single-

sideband operating points are shifted toward the AM operating point in Fig. 6, and

the correlated PM & AM operating point is similarly shifted in Fig. 7, relative to the

perpendicular. This is a product of the non-circular polarisation of light input into the

modulator device, and can be understood by reviewing the modulation ellipses in the

two figures; the M2 and M3 axes intercept the ellipse at points that are closer to the

AM operating point than the PM. In fact, this provides us with a means of calibration

21



of the relative transfer-function-amplitudes of the PM and AM double-demodulation

circuits: they are set by assuring that (in Fig. 6) the PM and AM components are

equal at the phase φ where the single sideband is known to occur (information which

is obtained via comparison with spectrum analyser data). Also, by using the identities

in Table C, we can derive a value of the polarisation parameter: σ ≈ 75◦.

Fig. 8 shows scans of the local region near the PM operating point, with deviations

in four directions. These data were taken with an offset locking application in mind,

as discussed earlier. The in-phase PM component (in-phase by definition) is by far

the dominant signal, and has been scaled down by a factor of 10 to fit in the graphs.

As expected, the UTM device can produce AM that is in-phase with the present PM,

or AM that is in quadrature with the present PM, by changing the relative electrical

signal amplitudes or phases respectively. In addition, both of these parameters can be

varied together or oppositely, to give independent control over the two quadratures

of AM resulting. We note that in the case of producing both in-phase and quadrature

AM, a small component of quadrature PM appears (in other words, the phase of the

PM changes, relative to that of the pure PM point used for the initial calibration). In

actual fact, the quadrature PM data has a noticeably larger systematic error than the

other three signals. This is most likely due to pollution from its in-phase counterpart,

caused by the demodulation oscillator’s phase drifting marginally (this was observed

to happen even in spite of the electronic phase locking between signal generators).

A number of experimental difficulties deserve mentioning. As described in the

context of the carrier suppression results, the UTM produced a spatially varying

polarisation state, which produced a small percentage of higher-order spatial modes
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upon selecting out a polarisation component (of order 1% of the overall power).

This interfered with our ability to directly measure the polarisation, which we did

by measuring the overall detected power while rotating a diagnostic half-wave plate

placed before the PBS. In this way, we measured a value of σ ≈ 70◦ for the results

shown in Figs. 6 to 8, as compared to σ ≈ 75◦ measured by inference from spectrum

analyser data. We assign a reasonably large error to the direct measurement value

due to the presence of the higher-order spatial modes, and we favour measuring σ by

inference from the data.

The overall optical path lengths of the modulating crystals were found to change

significantly as they warmed up after starting the laser. The dual crystal design of

the device goes a long way toward minimising this problem, and we have seen that

the device is stable once it has warmed up. However, long term drift of the crystal

lengths is possible, having a direct effect on the polarisation state leaving the device.

We propose that, in circumstances where this becomes a problem, a feedback loop be

employed to lock the polarisation state. A possible scheme would see the power level

out of one PBS port monitored and used as a feedback signal (minus an offset equal

to the desired power level) to the DC optical path length of one of the crystals, thus

compensating for a mechanical path length change by feeding back to the refractive

index.

Finally, the electrical impedances of the two crystals were not well matched for

two reasons: the electronics were not identical; and the crystals themselves had ”good”

and ”bad” spots which generated varying levels of modulation. In general terms,

careful alignment can largely overcome this problem and return the two crystals to
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an equal footing. The differing electrical impedances complicate the issue of generating

a local oscillator with the phase-tracking property discussed earlier, since the voltages

V1,2 and modulation depths δ1,2 are not then related by the same factor. We submit

that the device tested here is merely a prototype, and that careful management will

suffice to deal with these issues as the need arises.

4. Conclusion

We presented a thorough investigation, both theoretical and experimental, of a proto-

type Universally Tunable Modulator (UTM). The electrical-to-optical transfer func-

tion of the device was derived, both in terms of electrical and optical phasor notation,

and using a geometric phase ”Modulation Sphere” representation. Both pictures were

shown to have merit, and a set of cardinal modulations were described in each no-

tation. We reported on an experiment to characterise the prototype UTM, which

involved using dual double-demodulation circuits to measure both AM and PM com-

ponents simultaneously. Data sets were obtained and analysed to illustrate the vari-

ability and purity characteristics of the device; the device was shown to be highly

predictable and capable of highly pure states. Applications for the UTM were dis-

cussed.
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A. Appendices

A. Derivation of UTM transfer function

This is an outline of the derivation of Eq. 3. First, we find the (more general) transfer

function of the UTM when we allow the input beam to have any polarisation. At the

end, we will simplify to the subcase described in the main text.

The input beam’s polarisation will be characterised by two electric field phasor

components, L̃ = LeiσL and R̃ = ReiσR , as defined in a set of left-diagonal and right-

diagonal spatial coordinate axes (with unit vectors L̂ and R̂ respectively). The electric

field exiting the UTM can be written as a vector (to include polarisation information)

as:

~EExitingUTM =
[
L̃ei<{δ̃1eiωmt}L̂ + R̃ei<{δ̃2eiωmt}R̂

]
eiωt. (12)

(From hereon in, we will suppress the eiωt term for the sake of brevity.) Upon

passing through the vertically aligned linear polariser (equivalent to taking a dot

product with the vector (L̂ + R̂)/
√

2), and expanding the complex exponentials to

first order (hence assuming |δ̃1,2| � 1), the vertical electric field amplitude becomes:

EOUT =
1√
2

[
L̃(1 + i<{δ̃1e

iωmt}) + R̃(1 + i<{δ̃2e
iωmt}

]
. (13)
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Next, we collect DC terms and oscillating terms, and factor out the overall optical

phase:

EOUT =
L̃ + R̃√

2

[
1 +

i(|L2 + L̃R̃∗)

|L̃ + R̃|2
<{δ̃1e

iωmt}

+
i(R̃L̃∗ + R2)

|L̃ + R̃|2
<{δ̃2e

iωmt}

]
. (14)

Now, we work to separate real and imaginary components for the oscillating

terms:

EOUT =
L̃ + R̃√

2

[
1 + <

(
={R̃L̃∗}(δ̃1 − δ̃2)

|L̃ + R̃|2
eiωmt

)

+ i<

(
<{R̃L̃∗}(δ̃1 + δ̃2) + L2δ̃1 + R2δ̃2)

|L̃ + R̃|2
eiωmt

)]
. (15)

These real and imaginary oscillating terms correspond to AM and PM respec-

tively, so we parameterize via:

EOUT =
|L̃ + R̃|√

2
+ <{Ãeiωmt}+ i<{P̃ eiωmt} (16)

with

P̃ = <

(
<{R̃L̃∗}(δ̃1 + δ̃2) + L2δ̃1 + R2δ̃2)√

2|L̃ + R̃|

)

Ã = <

(
={R̃L̃∗}(δ̃1 − δ̃2)√

2|L̃ + R̃|

)
(17)

where the net optical phase shift has been discarded. Eqs. 16 and 17 constitute the

general UTM transfer function for arbitrary input polarisation. Note that the PM

component does not have the property of tracking the phase of the sum of the input

electrical signals, since it generally depends on these inputs in different proportions.

This is one of the reasons why we chose to restrict the polarisation to a subset.
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If we choose said subset, L = R = EIN/
√

2 (equal power in the two polarisation

axes), and define σ = σR−σL as the phase between the two polarisation components,

then the equations reduce to:

EOUT = EINcos
(σ

2

)
+ <{Ãeiωmt}+ i<{P̃ eiωmt} (18)

and

P̃ =
EIN

2
cos
(σ

2

)(
δ̃1 + δ̃2

)
Ã =

EIN

2
sin
(σ

2

)(
δ̃1 − δ̃2

)
. (19)

Eqs. 2 and 3 in the text are the same as these, but with a dimensionless definition

of P̃ and Ã.

B. Derivation of UTM transfer function for Q-space and M-space parameters

This is an outline of the derivation of Eq. 8. As with Appendix A, we derive the Q-

space to M-space transfer function of the UTM for any input light polarisation state.

At the end, we reduce the equations to the case where the allowed polarisations are

restricted. The derivation consists of transforming parameters P̃ and Ã to M-space

parameters (M1, M2, M3) using Eq. 6, and transforming parameters δ̃1 and δ̃2 to Q-

space parameters (Q1, Q2, Q3) using Eq. 7, and hence converting Eq. 17 from one set

of coordinates to another.

Firstly, it is convenient to write down a few intermediate terms using Eq. 17 as

a starting point. We also convert to Q-space parameters (via Eq. 7) as we go.
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P 2 = P̃ ∗P̃ =
<{R̃L̃∗}2[Q0 + Q2] + 2L2R2Q2

2|L̃ + R̃|2

+
1
2
[(L4 + R4)Q0 + (L4 −R4)Q1]

2|L̃ + R̃|2

+
<{R̃L̃∗}[(L2 + R2)Q0 + (L2 −R2)Q1 + (L2 + R2)Q2]

2|L̃ + R̃|2
(20)

A2 = Ã∗Ã =
={R̃L̃∗}2[Q0 −Q2]

2|L̃ + R̃|2
(21)

<{P̃ Ã∗} =
<{R̃L̃∗}={R̃L̃∗}Q1

2|L̃ + R̃|2

+
1
2
={R̃L̃∗} [(L2 −R2)Q0 + (L2 + R2)Q1 − (L2 −R2)Q2]

2|L̃ + R̃|2
(22)

={P̃ Ã∗} =
−={R̃L̃∗}

[
<{R̃L̃∗}+ 1

2
(L2 + R2)

]
Q3

2|L̃ + R̃|2
(23)

Things can be simplified somewhat by using a Stokes’ parameter representation

for the polarisation from this point. Here, we (unusually) define the Stokes’ parameters

in terms of left-diagonal and right-diagonal electric field components (equivalent to

rotating the usual X-Y axes anti-clockwise by 45◦):

S0 = R2 + L2

S1 = R2 − L2

S2 = 2RLcos(σ) = 2<{R̃L̃∗}

S3 = 2RLsin(σ) = 2={R̃L̃∗} (24)
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when the previous four equations become:

P 2 =
1

4

[
S0Q0 − S1Q1 + S2Q2 −

S2
3

2(S0 + S2)
(Q0 −Q2)

]
A2 =

1

8

S2
3

S0 + S2

(Q0 −Q2)

<{P̃ Ã∗} =
1

8

[
S3Q1 −

S3S1

S0 + S2

(Q0 −Q2)

]
={P̃ Ã∗} = −1

8
S3Q3 (25)

These intermediate quantities are then converted to M-space parameters (via

Eq. 6). We write the result here in matrix form:

M0

M1

M2

M3


=

1

4



S0 −S1 S2 0

S2 +
S2

1

S0+S2
−S1 S0 − S2

1

S0+S2
0

−S1S3

S0+S2
S3

S1S3

S0+S2
0

0 0 0 −S3





Q0

Q1

Q2

Q3


(26)

Eq. 26 is the general Q-space to M-space transfer function for the UTM with any

input polarisation. It gives further insight into the manner in which choosing L 6= R

affects the properties of the system. The parameters M1 and M2 depend on both

Q1 and Q2, which means that a sphere in Q-space will be distorted in the M1-M2

plane by the transformation. The resulting surface is an ellipsoid whose major axis

is no longer collinear with the M1-axis, but is at an angle subtended in the M1-M2

plane. This distortion certainly interferes with most of the favourable properties of

the system. For example, none of the poles of the ellipse coincide with a coordinate

axis, making any of the six operating points discussed more complicated to find.

The restriction on polarisation states discussed in the text is equivalent to setting

S1 to zero (which in turn forces S0 = E2
IN, S2 = E2

INcos(σ) and S3 = E2
INsin(σ)), when
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Eq. 26 reduces to:

M0

M1

M2

M3


=

E2
IN

4



1 0 cos(σ) 0

cos(σ) 0 1 0

0 sin(σ) 0 0

0 0 0 −sin(σ)





Q0

Q1

Q2

Q3


(27)

Once again, Eq. 8 from the text is the dimensionless equivalent of this, where

EIN is external to the definition of the M-space parameters.
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Fig. 2. (a) Q-space diagram. Axis labels are visual reminders of relative amplitudes and

phases of input electrical signals (try to visualise the display of a cathode ray oscilloscope

run in X-Y mode with δ1 and δ2 as the X and Y inputs). (b) M-space diagram. Axis labels

are optical amplitude phasors whose endpoints oscillate at the modulation frequency. For

σ = π/2, there is a graphical transfer correspondence between (a) and (b) according to

Eq. 9. (c) In general, the transfer function of the UTM, Eq. 8, takes a sphere of constant

input power in Q-space and returns an ellipse in M-space. A cross section is shown for a

selection of values for σ.
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LASER BS λ/2 λ/4 UTM PBS PD

PZT
AOM BS PD

80MHz
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MIXERS
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MIXERS
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DC
HFRe{Pe   }~ -iΘ

Re{Ae   }~ -iΘ

Θ

δ~2

δ~1

90o

Fig. 3. UTM heterodyne characterisation experiment layout. A spectrum analyser pro-

vides frequency line data (of the direct AM beat, and heterodyned copies of sidebands)

for establishing the purity of the UTM , while two parallel double-demodulation circuits

provide the complete set of modulation measurables for testing the variability of the UTM.

BS: dielectric beam splitter; λ/2 half-wave plate; λ/4 quarter-wave plate; PBS: polarising

beam splitter; PZT: piezo-electric actuator; AOM: acousto-optic modulator; FB: feedback

servo and HV amp; 90◦: electronic phase-shifter; DC/HF: bias-T; SA: spectrum analyser.

The 5 MHz signal generators are electronically phase-locked.

33



-100

-50

0

-100

-50

0

-100

-50

0

el
ec

 p
ow

er
 (

dB
m

)

0 5 10 15
-100

-50

0

frequency (MHz)
75 80 85

(a)

(c)

(d)

(b)

Fig. 4. Spectrum analyser traces of heterodyne measurements of four ”pure” operating

points. Frequencies of interest are 5 MHz (direct AM beat), 80 MHz (heterodyne-carrier

beat), and 75 MHz and 85 MHz (heterodyne-sideband beats). A solid line indicates data

averaged over a few seconds, a dotted line indicates max-hold data acquired over approx-

imately an hour, and arrows indicate lines that have been suppressed. The plots are: (a)

upper single-sideband (lower sideband suppressed by 34.9 dB); (b) lower single-sideband

(upper sideband suppressed by 39.5 dB); (c) pure PM (AM beat suppressed by around

38 dB); (d) carrier suppression (heterodyne beat suppressed by around 30 dB).
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Fig. 5. A more detailed spectrum analyser trace of sideband suppression, with 35.2 dB

difference between sidebands. Frequency lines at 72.1 MHz, 86.1 MHz and 87.7 MHz are

from radio interference with the electronic equipment.
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Fig. 6. (a) Modulation ellipse showing trajectory of measurement sweep through parameter

space, where the phase difference between electrical signals, φ = φ1 − φ2, is varied through

360◦. (The ellipse has an (exaggerated) σ of ≈ 53◦.) (b) Double-demodulation measurements

of PM (squares and diamonds for in-phase and quadrature components respectively) and

AM (pluses and crosses for in-phase and quadrature components respectively), with corre-

sponding theoretical predictions (solid lines). The majority of modulation present is either

PM or quadrature AM as predicted. This plot corresponds to σ ≈ 75◦; a value derived by

measuring, from corresponding spectrum analyser data, the phase φ at which the single

sideband operating points occur. Using a result from Table C, the phase φ between the pure

AM operating point and either of the single sideband operating points, is precisely equal to

σ.
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Fig. 7. (a) Modulation ellipse showing trajectory of measurement sweep through parame-

ter space, where the strength of one electrical signal, δ2, is varied from +5.1 V to −5.1 V.

The sweep involves varying the overall input electrical power, so the modulation trajectory

does not stay on the ellipse surface, and instead traces out a parabolic curve. (The ellipse

has an (exaggerated) σ of ≈ 53◦.) (b) Double-demodulation measurements of PM (squares

and diamonds for in-phase and quadrature components respectively) and AM (pluses and

crosses for in-phase and quadrature components respectively), with corresponding theoret-

ical predictions (solid lines). There is diverging agreement in the PM which may be caused

by imperfectly matched electrical impedances for the two crystals. As in Fig. 6, the location

of the correlated PM & AM point is shifted toward the pure AM point by about 0.7 V out

of 5.1 V and, referring to Table C, this corresponds to a value of σ ≈ 75◦.
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Fig. 8. (a) Modulation ellipse showing short-range trajectories designed to map local re-

gion near PM operating point. The electrical parameters φ = φ1 − φ2 and δ2 were varied to

achieve these results, with units worth 5◦ and 0.44 V respectively. (b), (c), (d) and (e) show

double-demodulation measurements of PM (squares and diamonds for in-phase and quadra-

ture components respectively) and AM (pluses and crosses for in-phase and quadrature

components respectively), with corresponding theoretical predictions (solid lines). Param-

eters varied were (b) φ, (c) δ2, (d) φ and δ2 together with the same polarity, and (e) φ

and δ2 together with opposite polarities. Note: the in-phase PM data points (squares) have

been scaled down by a factor of 10 to fit in the diagram. Also, the systematic error in the

quadrature PM data is probably due to an electronic phase drift between signal generators,

causing a small amount of in-phase PM data (which is an order of magnitude stronger) to

couple across.
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