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Abstract: Holograms  synthesized by computer are used for  constructing  optical  wavefronts  from  numerically  specified  objects. 
Elimination  of the need for a physical  object has  made new applications  possible,  for  example,  three-dimensional  computer output 
displays,  synthetic  prototypes  for  interferometric  testing,  and  filters  for  various  optical data processing operations.  Our  computer 
holograms  differ  from a normal  hologram in that the transmittance is  binary,  yet  they are able to construct  general  wavefronts and 
images  efficiently and have  several  practical  advantages  over  holograms  with a continuous  range of transmittance.  Recent  improvements 
that simplify the production of  binary  holograms and  improve  their  performance  are  described  and  experimental  work  showing 
reconstruction of  two- and  three-dimensional  images  is  presented. 

Introduction 
In 1965, encouraged by the spatial filtering work of 
Kozma  and Kelly:  we started to synthesize holograms 
with the  aid of a computer.’ Since then we have studied 
the problem in  more detail3 and have applied the computer- 
generated  holograms to various spatial filtering experi- 
ments.’*4-6 Now several other groups, using a variety of 
techniques, are producing  holograms by computer?-*’ 

There is considerable motivation for synthesizing holo- 
grams. Included is  the  fact  that  the object  volume is no 
longer physically constrained  by illumination coherence, 
vibration, or air turbulence  considerations and  it is 
possible to study  certain  holographic effects by simulation. 
For example, Leith and Upatniekslg  demonstrated that 
a ground glass in contact  with an object may improve 
the light efficiency of a hologram, but  it  also creates a 
noisy image. Now with the help of a computer it might  be 
possible to simulate an  optimal ground glass that in- 
creases efficiency without introducing noise. 

A more important reason for synthesizing holograms 
is to create  optical wavefronts from objects that  do  not 
physically exist. A need to form such a wavefront from 
a numerically described object occurs whenever the results 
of a three-dimensional investigation, for example, the 

analysis of an x-ray diffractogram, must  be displayed in 
three dimensions. Alternatively, a wavefront from a com- 
puter-generated hologram might serve as  the interfero- 
metric prototype for testing a complex optical surface 
during  its manufacture. 

Another need for computer  holograms arises from 
spatial filtering experiments. Sometimes, such  as when 
making inverse filters, differential filters, or optical code 
translators, the filter function  can  be dficult to produce. 
Complex division and  other mathematical  operations per- 
formed by optical and photographic  methods  can be quite 
tedious  compared  with the ease with which a computer 
handles  such t a ~ k s . ~ , ~  

There  are  other advantages of computer-generated 
holograms which are associated with the  fact  that a 
binary transmittance pattern can be used instead of the 
grey sinusoidal fringe pattern of ordinary holograms. 
Here we discuss some of the general features of computer- 
generated holograms and, in  particular,  the  features of 
those types that have only a binary transmittance. 
Recent improvements in  the theory of binary  computer- 
generated  holograms are presented with experimental 
demonstrations. 
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Hologram synthesis by computer 
The process of synthesizing a hologram generally consists 
of four steps. First  the propagation of the complex ampli- 
tude from  the object to the hologram plane is computed. 
Actually, because of computer  limitations, it is possible 
to compute the amplitude only at  a finite number of 
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sampling  points,  but  this constraint is quite tolerable 
since the amplitude  is a band-limited  function as demon- 
strated previ~usly.~ 

The second  step,  still  within the computer,  is to encode 
the complex amplitude as a real,  non-negative  function 
from which the hologram artwork can be generated on a 
graphic output device. An example of such an encoding 
scheme  is the simulation of the  interference  fringes  caused 
by interaction of the reference and object  beams  in  con- 
ventional  holography. 

The final  steps are to make the artwork and to reduce 
it to a reasonable size for diffracting  light.  Cathode-ray 
tubes,  line  printers, and mechanical plotters have been 
used to produce the artwork and the characteristics of 
these  devices  have  determined to a great extent the dif- 
ferences  among the various  hologram  generation  tech- 
niques. The final photoreduction step could, of course, 
be eliminated by using  special output devices to write 
the hologram  directly in the desired  size. 

Basically the function of a computer-generated  hologram 
is to create an optical wavefront from a set of computed 
data that are a proper sampling of the complex  wavefront 
amplitude. If a very  small antenna could  be  placed at 
each  sampling point and driven at the correct  amplitude 
and phase, the wavefront would  be  generated  provided 
the sampling were  sufficiently frequent. However,  con- 
struction of such an antenna array, which radiates at 
optical frequencies  using, for example, a proper distribu- 
tion of thin dielectric  films to provide the correct  phase, 
is  difficult. 

Fortunately Lord Rayleigh  was  aware of a simpler 
method of making  complex  wavefronts. He knew that 
slight  dislocations of  some  slits  of a diffraction  grating 
would  give  rise to "ghosts"  in the diffraction  spectra. 
While the path difference for wavelets from adjacent 
slits of a perfect  grating  in the first  diffraction order is 
exactly  one  wavelength, the path length  difference for 
wavelets from a dislocated  slit and its neighbor will  be 
greater or less than one  wavelength. The deviation from 
an integral  wavelength,  also  called a "detour phase," 
was  only a nuisance to Lord Rayleigh, but has  since  been 
used  by Hauk and Lohmann" and by Taylor and his 
c o - w ~ r k e r s ~ ~ ~ ~ ~  for representing  phase  functions. This 
detour phase  also forms the basis for encoding the phase 
in computer-generated  holograms. 

There are a variety of forms, however, for encoding the 
modulus of the complex  amplitude. In a manner  similar 
to that of the conventional  hologram  formed by inter- 
ference, the amplitude  can  be  represented by the contrast 
of sinusoidal  fringes. It is  possible to avoid  grey trans- 
mittance  levels and yet to maintain  complete control over 
the amplitude encoding  with binary patterns by rep- 
resenting the fringe contrast by variable  width  slits, 
discontinuous  slits, or dots of varying spatial density. 
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Figure 1 Optical system for reconstructing Fourier holo- 
grams. 

Originally we started synthesizing  holograms  with  binary 
patterns because of the availability  of  computer-controlled 
mechanical plotters; however, we  have since  uncovered 
several  features that favor the binary approach and 
that have warranted its further development. 

Features of binary holograms 
The ease and accuracy  with  which  binary patterns can  be 
photographically  reduced and reproduced  compared  with 
grey patterns are well known and form the basis for the 
half-tone  printing  process widely  used for pictures  in 
newspapers and magazines.  Like  half-tone  pictures the 
quality of the binary  hologram  is quite insensitive to 
nonlinear photographic effects; thus much  less control 
over the exposure and development  is  needed  during the 
reduction  process.  These  holograms are, therefore,  more 
suitable for mass production as, for example,  read-only 
memory  elements or master  holograms in technical  pub- 
lications. 

Another  advantage of the binary  hologram  over the 
grey hologram  is that  it directs  more  light to the recon- 
structed image. In fact., by  using  emulsion  relief  effects or 
diffraction  grating  ruling  techniques, it should be  possible 
to synthesize  blazed  holograms.  These  could  have  very 
high  efficiency as demonstrated recently by SheridonZ4 who 
made  blazed  holograms  by  interference  methods. 

Using  Kogelnik's  definitionz5 of hologram  light effici- 
ency,  we can  compare the binary and grey hologram  types 
by considering the diffraction efficiency  of ideal regular 
gratings. As holograms  these  gratings reconstruct single- 
point  images at x = x. and y = 0 in the output plane 
of the system  shown in Fig. 1. The transmission functions 
of these  gratings  have a period d = Xf/xo and are illus- 
trated in Fig. 2 for (a) conventional  grey,  (b)  binary, 161 
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Figure 2 Amplitude and phase  transmittance of (a)  grey, 
(b)  binary, (c) bleached  grey, (d) bleached  binary, and 
(e) blazed  holograms.  The  parameter A is  proportional to 
the  modulation  level. 

(c)  bleached  grey, (d) bleached  binary, and (e)  blazed 
holograms. The expressions for these  functions are given 
in  Table 1 with the term  responsible for the point image 
listed  separately. In all cases A is a parameter  describing 
the extent of modulation and it cannot exceed unity for 
the nonbleached,  amplitude-modulated  holograms  (a) 
and (b). 

The squared modulus of the point image term, which 
represents the fraction of incident light transmitted to the 
image,  is plotted in Fig. 3 as a function of the modula- 
tion A.  This figure  shows that the efficiency of a grey 
hologram  has a maximum of 6.2% whereas that of a 
binary  hologram  reaches 10%. The bleached  versions of 

Table 1 Transmission function of grating  holograms. 

these  holograms can attain efficiencies  of 34y0 and 417,, 
respectively,  while the blazed  hologram  value  could  reach 
10070, at least for a single-point object, comparable to a 
volume  phase  hologram. 

Actually the light efficiency advantage of binary  holo- 
grams is even more  significant  in  most practical situations. 
Typically,  when  making a grey hologram, the reference 
wave is two to three times  larger in amplitude than the 
object wave, so that the fringe contrast does not extend 
beyond the linear  region of the transmission-vs.-exposure 
curve of the photographic  plate. The consequence of the 
strong reference  beam  is,  therefore, to keep the modulation 
parameter A of Fig. 3 less than about 0.5 for the grey 
holograms.  Since this photographic linearity  consideration 
does not apply to the binary  holograms, the modulation 
parameter A can  remain  near  unity and yield  maximum 
efficiency for these  types. 

For more  complicated  objects the efficiencies un- 
doubtedly would be less and for bleached  grey  holograms 
the presence of image  flare from the phase intermodulation 
noise  must  be  considered.  Nevertheless, the efficiency 
values  obtained  from the mathematically tractable point 
object case should  be  useful for comparison. 

In addition to having  higher  efficiency, the reconstruc- 
tion of a binary  hologram  yields  less  noise from light 
scattered by the photographic grain structure.  At trans- 
mittance  values near one  there are very  few grains to 
cause  scattering,  whereas  near  zero transmittance several 
layers of silver  grains  reliably  make the emulsion  opaque. 
On the other hand, the transmittance of a conventional 
grey  hologram  fluctuates  near a value of 0.5 where  grain 
scattering  noise  is  most severe. 

To realize the noise and efficiency advantages of binary 
holograms it is  essential that the resolution of the photo- 

Hologram type Transmission function Point-image term 

(a) Grey 
A 
4i 
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I Modulation parameter’A 

Figure 3 Reconstruction  light efficiency as a function of 
modulation parameter for (a) grey, (b) binary, (c) bleached 
grey, (d) bleached binary, and (e) blazed  grating holo- 
grams. 

reduction be sufficient to ensure a sharp-edged binary 
pattern. Specifically, the transition regions of the recorded 
edges should be an  order of magnitude smaller than  the 
typical aperture size. If this  is  not possible the rounded-off 
apertures will approximate the sinusoidal fringe structure 
of a grey hologram and  the performance would, therefore, 
be reduced. 

Although the binary hologram requires a higher spatial 
bandwidth than  the grey type, this is usually not  as sig- 
nificant for computer-generated holograms  as is computa- 
tional economy. In  the sense of the Cauchy sampling 
theorem, the binary  hologram is optimal because an 
image of N resolvable points  can be reconstructed from 
a hologram of N computed  apertures. The  additional 
spatial  bandwidth required in  the recording step is quite 
analogous to the extra  temporal  bandwidth used in 
electronic digital telemetry systems. In both cases band- 
width utilization is traded  for  the use of binary signals 
to increase the signal-to-noise ratio over that of a system 
using analog signals. 

With  this  analogy  in  mind it is tempting and perhaps 
instructive to view the binary  hologram in  the language 
of communication  theory a s   k i t h  and Upatnieks” have 
done  for  the conventional hologram. In this  light the 
binary  hologram can be considered to be a spatial equiv- 
alent of pulse modulation. The phase encoding method 
is analogous to pulse position modulation while the 
amplitude encoding method is similar to pulse width 

V 

t 

t 

V 

( f )  
K 

(c) 
Figure 4 Spatial modulation: (a) the complex  signal ii = 
liilexp(icp); ( b )  sinusoidal carrier modulated by a into 
H; (c) pulse modulation of a into B ;  (a) spectrum of ii; (e) 
spectrum of H ;  and ( f )  spectrum of B. 

modulation.  Figure 4a illustrates a complex function 
11 = I 1 1 1  exp (icp) that modulates the amplitude and phase 
of a sinusoidal carrier to  form  the real, non-negative 
transmittance H (Fig. 4b) of a conventional hologram. 
In Fig. 4c the corresponding pulse-modulated hologram 
is shown in which a binary transmittance B now represents 
the complex light  amplitude. The  Fourier spectra, Figs. 
4d, e, and f, show that a binary  hologram  contains the 
same spectrum as  the conventional hologram plus some 
higher harmonics. The shaded areas  are high-pass and 
band-pass filters that may be used to eliminate the 
unwanted  portions of the spectra  during  reconstruction. 

If it were desired to transmit holographic  information, 
a simple scan of a binary  hologram would produce a 
pulse-modulated signal for transmission over a telemetry 
system and,  as is well known from pulse modulation theory, 
considerable noise suppression could be  obtained simply 
by clipping the received signal. Any remaining noise 
might be harmless because of the well-known insensitivity 
of holograms to local defects. Alternatively, the set of 
complex numbers that represent the object wave 11 at 
the sampling points in  the hologram  plane could be 
transmitted as a pulse-code-modulated binary signal with 
the  actual hologram being synthesized at the receiver. 
The advantages of binary signals and holographic  prop- 
erties would be maintained, but now the transmission 
reliability could be improved further by  incorporating an 
error detection and correction scheme into  the pulse code. 163 
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Figure 5 Artwork of binary  hologram  with 16,000 apertures. 

Recent  improvements in the  theory 
Previous  work on binary  holograms  presented by this 
laboratory’  demonstrated an intuitive  method for rep- 
resenting a wavefront by an array of binary apertures. 
The approximations involved in this method  were  dis- 
cussed  in a more  recent  paper3  along  with a rigorous 
solution  based on an iteration procedure. 

Recently we have  modified” our method for making 
binary  holograms for two  reasons: (1) a certain  phase 
ambiguity was not handled  correctly  in the previous  work 
and this resulted  in  what we can  refer to as the “gap 
and overlap  problem” and (2) the computer  time  required 
for the iteration procedure was rather long  relative to the 
value of the improvement obtained by it. We have now 
devised a new method to compensate for the approxima- 
tion$ that, although not as rigorous as  the iteration 
method, is simpler and is  experimentally quite successful. 

First, for a review  of the binary hologram structure, 
a typical  hologram is reproduced in Fig. 5. Each aperture 
is  positioned a distance P from a sampling point according 
to the phase p of the computed  wavefront. The height 
W of the aperture is proportional to the modulus of the 
amplitude. Figure 6 shows the format and notation in 
detail for this hologram. Other rectangular aperture 
formats have  been used’ and certainly  non-rectangular 
ones are possible;  however, the variable  height  rectangle 
is convenient for the mechanical plotter to draw and is 

164 the one we use  most  often. 

Figure 6 Aperture  format of binary  hologram  (sampling 
point  locations  indicated by + symbol). 

The top and bottom rows of apertures in  Fig. 6 depict 
the gap and overlap fault, which had been  observed 
previously  in  more  complicated  holograms. To understand 
this problem we studied  holograms of single-point  objects 
because the correct  holograms for this case are known 
to be  regular  gratings and any  deviation  could  be traced 
easily. The mathematical  oversight which  was responsible 
for the gaps and overlaps was found to have occurred 

f. 31 when  we concluded from 

(2riPam) (1) 

(2)  

and ignored all the other possible  solutions, 

P n m  = (prim + 2 r L n m ) / 2 r ,  ( 3) 

where Lnm is any  integer. 
To eliminate this ambiguity we introduced a rule that 

the spacing  between  adjacent apertures should be as near 
as possible to one sampling  interval. In other words L,, 
was  chosen so that 

IP,,,, - P,,I 5 3. (4) 

Although this rule eliminated the gap and overlap problem, 
it did not compensate for a distortion produced by the 
simple algorithm? The distortion, which  became  evident 
in the observation of single-point  holograms,  compressed 
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the image scale close to the  zero  order, but expanded 
it  at  the  outer portions of the field. Fortunately, because 
the hologram binarization process is nonlinear, super- 
position of point-object results does not describe the 
general case; no distortion  has been observed in  our pre- 
vious experimental work with extended objects. 

Since image distortions in general are due to phase 
errors in the Fraunhofer plane, and because we implement 
the phase with the aperture positions P,,, it is evident 
that the original method,  Eq. (2), needs to be modified. 
Although the iterative procedure3 did eliminate the dis- 
tortion, a simpler method is to position the aperture 
according to  the  actual phase at the  aperture itself rather 
than according to  the phase at  the nearby sampling point. 
Thus in one dimension the apertures are located so that 

27rP,, = cp[(P, + n) SX’] + 27rL,. ( 5 )  

This equation means that if the hologram is illuminated 
with a tilted plane wave, 

R(x’)  = exp (27rix’lSx’) = exp (i#), (6) 

the apertures are placed where the illuminating wave 
R = exp (i#) equals the phase factor exp (icp) of the wave- 
front II = I l i !  exp (@) to be reconstructed: 

exp [ i# (Pn  Sx’)] = exp [icp(P, Sx’)] . (7) 

The essence  of Eq. (7) is illustrated in Fig. 7b, while the 
old  method according to Eq. (8) is demonstrated in 
Fig. 7a for comparison: 

exp [ i#(Pn Sx’)] = exp (icp,,) . ( 8) 

The drawback of the new method  is that  the phase 
cp(x’) must now be known continuously over the hologram, 
not  just  at  the sampling points. To compute the Fourier 
transform  more often could become quite costly for large 
holograms, even using the Cooley-Tukey algorithm’’; 
however, a simple interpolation scheme has proved quite 
satisfactory. 

In principle, the continuous  Fourier  transform of a finite 
object can be constructed exactly from an infinite number 
of discrete samples according to  the Cauchy sampling 
theorem. It states for  one dimension that 

m 

L?(x’) = I I ( ~ ~ ~ / A X )  sinc [(X’ A X / X ~ )  - n]. (9) 

Here the ci(nAf/Ax) are the sampled values of the Fourier 
transform of an object distribution u(x) which is zero 
outside the  interval 1x1 5 +Ax and sinc ( z )  is defined as 

sinc (z)  = sin (TZ)/TZ. (10) 

The evaluation of even a truncated sum of (9) can be 
very time-consuming; therefore we used a cubic polynomial 
to interpolate  the phase cp(x’) between the adjusted phases 
at the sampling points cp, f 27rLn. The interpolation was 

n=”m 
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Figure 7 Aperture  position (squares) relative to sampling 
points (circles) determined by (a) phase p, at sampling 
point  and (b) phase at actual aperture position. 

based on a cubic form of  Newton’s  formula’’ determined 
by four sampling points in the  horizontal row surrounding 
the nth  aperture  location. The justification for using only 
horizontally neighboring points for interpolation  is based 
on the  former  iteration corrections [Eqs.  (23b’) and (23c‘) 
of Ref. 31, the y’ correction being an order of magnitude 
less significant than the .x’ correction. This is also reason- 
able intuitively because the corrections compensate for 
the  apertures being shifted away from  the sampling point 
only in the x‘ direction. 

The actual position P,, in two dimensions of the  nth 
aperture of each row was obtained by solving Eq. (5) 
numerically by Newton’s method using the  interpolated 
values for  the adjusted phase on the  right  hand side of 
the equation. After locating the  aperture position P,,, the 
aperture height W,, was then  made  proportional to 
the interpolated  modulus I f i 1  of the complex amplitude 
at the  aperture position. 

Experimental results 
The binary holograms used to reconstruct the images of 
this section have over 16,000 apertures in a 128 X 128 array 
and  are similar to Fig. 5. They were computed with an 
IBM System/360 Model 50 computer in four to eight 
minutes depending on the object complexity. The 70-cm- 
square  artwork was plotted in three strips to accommodate 
the 25-cm width of the CalComp 565 incremental plotter. 
Plotting time was typically 40 minutes. After assembling 
the strips, a 18OX photoreduction onto  Kodak 649F film 
was made in one  step using a Leitz Summicron-R 50-mm 
camera objective. The resulting holograms are 4 mm square 
with an average aperture spacing of 0.03 mm. 1 65 
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Figure 8 Image  reconstructed from a binary hologram 
showing  resolution,  grey  tones,  and  noise from a simulated 
diffuser. 

Figure 9 Image  reconstructed from a binary  hologram with 
diffuser  noise  reduced. 

Figure 10 Three-dimensional  reconstructed  image  consist- 
ing  of three planes  spaced  in depth. 

An example of the complex structure that can be re- 
constructed from such a hologram is shown in Fig. 8. 
The object was designed on a grid 112 X 112 points that 
could be white, grey, or black. The finest bar  patterns 
indicate the highest achievable resolution. Larger areas 
at the  top of the image show the capability for recon- 

166 structing grey tones. Unfortunately the noise introduced 

by simulating a diffuser with a random phase over the 
object array is fairly severe in this case. 

In the image of Fig. 9 the diffuser noise was reduced 
by applying a random phase only to every second  object 
point in every other row. Phases of intermediate points 
were obtained by linear  interpolation to achieve a smoother 
distribution.  Although  this method does reduce image 
noise, the light diffraction efficiency is also reduced. 

Since a binary hologram  can reconstruct a general 
wavefront, it can, of course, reconstruct wavefronts from 
three-dimensional objects. Like Waters" and Lesem, 
Hirsch, and we use a Fourier  type  hologram 
that  forms two real images near the focal  point of the 
reconstruction beam. Calculation of the  light  propagation 
from three-dimensional objects is performed according to 
the  usual  parabolic  approximation to  the Fresnel-Kirchhoff 
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diffraction  integral (see, for example, Born and Wolf3’). 
The wavefront to be reconstructed by the  hologram is, 
therefore, the superposition of the Fourier transforms of 
each object plane  in depth, modified by a quadratic phase 
factor, 

(Do = %(x’2 + y”)/Xz, (1 1) 

where z is the hologram-to-image-plane distance. 

it contributes a quadratic phase of 
If a lens of focal  length J is placed near the hologram, 

(FL = %(x’2 + Y ’ 2 ) / X f ;  (1 2) 

thus  the hologram need have only  the difference 

encoded  in it. This phase factor can be quite small if 
(f - z )  << J. When this is the case most of the focal power 
is provided by the lens and high spatial frequencies asso- 
ciated with the phase  factor  are avoided. Figures 10  and 11 
show images reconstructed  in  three dimensions from such 
holograms. The planes in depth may be focused on in- 
dividually as shown in  the figures. 

The  lateral extension of these images is about 2 mm; 
however, in Fig. 10 the planes are separated by 1 mm in 
depth whereas the separation  in Fig. 11 is 10 mm. These 
separations  correspond respectively to 1.3 and 13 times 
the depth of focus of this setup. The  depth of focus is 
defined3’ as 

Az = i2($)’X, 

where D is the diameter of the hologram. The varying 
size  of the undiffracted zero order on the right  hand side 
of Fig. 11 indicates the relative distances of the image 
planes from the  focal  point of the reconstruction beam. 

Conclusions 
During our work we have increasingly found the binary 
holograms to be an efficient digital-to-optical  information 
linkage. Not only are they efficient in  terms of optical 
performance, but they are easy to produce and have 
favorable  information  transfer  properties as well. Perhaps 
the most significant aspect of the computer-generated 
hologram is that  it physically connects the digital tech- 
nologies of numerical  computation and pulse transmission 
with the capabilities of coherent  optical systems for parallel 
processing and graphic display. As the computational 
ability to handle  large arrays of lo5 to lo6 elements 
improves, it seems likely that such a link will gain  impor- 
tance. The computer-generated holograms could be useful 
for relating such quantities of data  to the  human and 
physical world. Conversely, as the processing of graphic 
information becomes more common, computer-generated 

Figure 11 Three-dimensional image having four planes 
spaced in depth;  separation of planes is ten times that of 
Fig. 10. 

filters in optical systems could aid in direct optical proc- 
essing or the conversion of graphic  information to digital 
form. 
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