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Abstract

In modeling color vision, certain visible wavelengths ha
special significance. A growing body of scientific work
shows that the wavelengths around 450nm, 540nm a
605nm, the so called prime-color (PC) wavelengths, a
fundamental to color vision. Perhaps unsurprisingly, th
same wavelengths are often discussed in the color im
ing literature. Monitors that can display a large gamut
colors and are visually efficient have phosphor-prima
peaks at the PC wavelengths. Color cameras that h
peak sensitivities at the PC wavelengths have favora
color-balancing properties. Why are the PC wavelengt
so important? This paper provides a start toward a ma
ematical theory to answer this question.

1. Introduction

Suppose we acquire an arbitrary scene with a digital ca
era and display the captured image on a monitor. Idea
ignoring issues of preference and rendering intent, t
displayed image should be a visual match to the orig
nal scene. The goodness of the match depends on th
things: the spectral characteristics of the camera, the s
tral characteristics of the monitor, and the processing a
plied to the image. In this paper we consider the natu
of optimaldevice characteristics andoptimalprocessing.

In discussing optimal processing, we will repeated
encounter theprime-color(PC) wavelengths, and so de
fine them here. The three PC wavelengths are those
which unit-power monochromatic lights induce the larg
tristimulus gamut (volume of the parallelepiped spann
by the tristimulus vectors of these lights). An older defin
tion (in Part I of[1]), which was shown by Brill[2] to
be equivalent to the above, is based on a color-match
experiment using these wavelengths for monochroma
primaries. Color-matching functions derived from an
three monochromatic primary lights are such that, f
each of the primary wavelengths, one color-matching fu
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tions is 1 and the other two are 0. Choosing the monoch
matic primaries at the PC wavelengths additionally e
sures that for each of the derived color-matching fun
tions, at the primary wavelength for which its value i
1, it is also maximum (and maximum in absolute value
The older definition was based on an argument of visu
efficiency: no more than one watt of a PC primary i
needed to match one watt of any other wavelength. W
prefer the new definition because the existence of prim
color wavelengths is clearer by the new definition.

Now it is important to understand what we mean b
”optimum.” In defining optimum three characteristics we
considered: gamut size, efficiency, and balance.

Gamut Size

The optimal monitor should have a large color gamu
otherwise colorful scenes will be poorly reproduced. Tw
important issues relating to gamut are the range of sa
rations that can be displayed and the volume of the d
playable color space (defined in terms of the colors w
see). To maximize saturation we consider only the ide
of monochromatic monitor primaries, each triplet of whi
induces a volume in tristimulus space. Over all pos
sible triplets of wavelengths we find that primaries an
chored at approximately 450nm, 540nm and 605nm i
duce the largest gamut size. This agrees with the res
one of us obtained earlier when computed in cone r
sponse space[3]. The wavelengths 450nm, 540nm a
605nm, thePC wavelengthshave been shown to play an
important role in many aspects of vision (including som
of the aspects we discuss below). In this paper we gi
an mathematical explanation ofwhy the PC wavelengths
are so important.

Efficiency

Of course, large gamut size cannot be our only co
cern; energy efficiency must also be considered. If, f
example, a monitor primary mixture of10k Watts is re-
quired to match a physical (scene) stimulus ofk Watts,
cience, Systems, and Applications       33
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then the monitor is visually inefficient. Visual ineffi
ciency, by definition, implies a large power consumpt
(undesirable). More seriously, because the power ou
is bounded, it limits the display signal. The efficiency
this signal as compared to the noise (due to display
facts and viewing conditions) limits the dynamic range
scenes that can be reproduced. This poses the que
‘which monochromatic set of primaries is the most vis
ally efficient’. Again, the PC wavelength set was fou
to be optimal in this regard. That is, optimizing gam
size also optimizes visual efficiency and the scene
namic range that can be displayed.

We now consider the spectral sensitivities of the ca
era that will drive our display. In the absence of noi
it is sufficient that the camera sensitivities are a lin
transform from the color response, defined by the co
matching functions, of our own visual system[4]; in th
case the RGBs measured by the camera are linearl
lated to the required mixture coefficients. Unfortunate
the signal measured by the camerais confounded by the
noise[5] and the linear matrixing operations increase
noise. Thus, it is advantageous to build a camera that
exactly the required mixture coefficients without any m
trixing. Classical colorimetry tells us that in this case t
camera should have sensitivities that are matching fu
tions for the monitor primaries.

Balance

A further complication is the role that the illumina
tion spectral power distribution plays in our visual pe
ception. It is well known that human observers ha
some degree of color constancy; that is, we see co
as more or less stable over a wide variety of illuminan
It is imperative then that this color constancy should
mimicked in the color reproduction process. The si
plest, and most commonly used, method to discount
illumination is to divide the camera RGBs by the RG
for the illuminant (the RGB for putative white surface
Relative to this operation, it is clear that white will a
ways be mapped to(1; 1; 1) and so is always illuminan
independent. It is less clear that dividing by white d
counts illuminant color for other surface colors. Inde
it is well known that white-balancing will work for un
restricted surface colors if and only if the camera h
monochromatic sensitivities[6]. Failing this, the sensit
ities should be as monochromatic as possible[7], but
be a linear combination of the color matching functio
to avoid metamerism. We show that over all linear co
binations of the color matching functions the set who
primaries are at the PC wavelengths behave most li
The Sixth Color Imaging Conference: Color S
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monochromatic sensor set. Relative to this particular s
dividing by white accurately discounts illuminant colo
bias for nearly all surface colors.

The reader may feel a little uncomfortable with th
discussion about monochromatic primaries and sens
but we believe our arguments tie in with practical colo
imaging. As an example, the dominant wavelengths f
most monitor primary sets are at, or near, the PC wav
lengths. The trade-off between good color balancing p
erties (in tri-band camera sensors) and low metameri
(found in color matching functions) results in a transfo
mation of the matching functions that are as narrow
possible; these functions peak at the PC wavelengths

The work that precedes this article focussed on p
viding experimental evidence for the importance of th
PC wavelengths; a review of this work is given in se
tion 2. The next three sections (sections 3-5) are a
tailed analysis of the three main points: gamut size,
sual efficiency, and color balance. In section 6, we pla
our work in the context of the large literature on PC wav
lengths that is especially relevant to color imaging. Th
relationship between our idealized monochromatic p
maries and those used in practice is made clear.

2. Visual system sensitivities and PC
wavelengths

The importance of the PC wavelengths has been long
ported in the color vision literature. W. D. Wright, in
speaking of the three characteristic intersections of t
spectral power distributions of lights (and speaking b
fore the term prime color wavelengths was coined) th
match to a normal human observer[8], states ”...each c
ing point tends to be located near to the three maxima
the sensitivity curves.” Following Wright’s lead, one o
us made a 20-year study[9, 10] of the intersections
matching lights, concluding that the modal wavelengt
of intersection lie near the PC wavelengths, and that th
mark the spectral colors to which the normal human v
sual system responds most strongly (i.e., the peaks
the visual system sensitivities). It should be noted ho
ever, that these modal wavelengths depend on the p
ticular color matching functions used. As an examp
the modal wavelengths for the CIE 2 degree standard
server functions were found to be 447nm, 541nm a
604nm, and for the 10 degree standard observer, 446
538nm and 600nm; modern data for six human observ
show 450nm, 533nm, and 611nm. In this paper, we re
to the CIE 2 degree observer PC wavelengths.
cience, Systems, and Applications       34
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In 1975[11](Part I) Thornton discovered that tran
formation of primaries of either the 1931 or 1964 C
Standard Observer to real primaries that coincide in w
length with the peaks of the resulting color-matching fu
tions results in the same three wavelengths; such coi
dence signifies that the resulting three spectral lights
quire minimum power content in visual matches in whi
they occur, i.e., they invoke maximum visual-system
sponse per watt. White lamplight composed of the pri
colors was shown to afford high visual efficiency a
good color-rendering[1], as well as a gamut of colorat
exceeding that of daylight of the same color[12]. T
chromaticity of an element in any visual scene is est
lished with minimum power input to the eye when lig
from the element is composed of a mixture of spec
colors near the PC wavelengths[13]. Systems of co
television, color photography, and colorants (inks, pai
and dyes) were proposed[14], the latter for reasons
improved color-constancy[15, 16, 17] as well as lar
gamut of color. Three articles discuss the relation
tween PC wavelengths and peak system sensitivities
19, 20]. Part I of [11] shows that the prime colors are r
ident in both the 1931 and 1964 CIE Standard Obser
data. The remaining Parts II - VI of [11] make clea
however, that the CIE color-matching functions are no
be relied upon as weighting functions in color imagin
unless (1) metamerism is very weak indeed, or (2) al
the viewed lights involved are composed predominan
of PC wavelength components; in those cases, tristi
lus errors by one or other of the CIE Standard Observ
will be relatively small, but not zero. Finally, peak sens
tivities of the normal human visual system are shown[2
to be slightly but importantly different from those of e
ther CIE Standard Observer, and are to be found nea
following wavelengths: 450 +/- 1nm, 533 +/- 1nm, an
611 +/- 3nm.

In the context of the current article one might wond
whether any of the various proposed ”cone function
lead properly to the sought three sensitivity functio
of the normal human visual system, to be used in co
imaging. In 1974 Stiles and Wyszecki made a Hercule
effort[22] to show the opposite: that three accepta
absorption curves of visual pigments could be inferr
from the CIE color-matching data. Stiles had shown
1953 that the longwave spectral sensitivity of Pitt,
well as that of Stiles himself, ”could not correspond
absorption by a single visual pigment of the rhodop
type...” The 1974 work agrees, and concludes that
CIE color-matching data demand ”...a peak wavelen
for the ’red’ sensitive pigment at 617nm which other e
er

The Sixth Color Imaging Conference: Color S
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idence shows to be much too far in the red” and ”.
completely unacceptable transmission curve repres
ing light losses in the eye prior to visual absorption.”[2
One of us suggested[18] in 1978 that this indicated ’r
peak position near 617nm (unacceptable as a rhodo
absorption), as well as the acceptable peaks near 43
and 535nm, represent ”peak system responses.” It
lows that the valid peak visual-system responses, nee
in color imaging, cannot be expected to be derivable fr
”cone functions” of the type that have been proposed

3. Gamut size

Let C(�) denote a spectral power distribution (SPD)
light that enters the visual system. Assuming the vis
system is trichromatic with sensitivities proportional
the CIE XYZ standard observer matching functions. T
visual system responds linearly as follows:

x =
R
!
X(�)C(�)d�

y =
R
!
Y (�)C(�)d�

z =
R
!
Z(�)C(�)d�

(1)

whereX(�),Y (�) andZ(�) are the color matching func
tions for the standard observer and! represents the visi-
ble spectrum (roughly 400 to 700nm).

By sampling each spectral function every 5nm it
possible to rewrite equation (1) in the notation of vec
algebra. LetC denote the 61-vector (61 samples acro
the visible spectrum) corresponding toC(�). Similarly
X, Y andZ denote vector approximation of the thre
standard observer functions. For ease of notation
group these three vectors into the three columns of
61� 3 matrixR. The vector� = [x y x]t is equal to:

� = RtC (2)

A typical monitor has three primaries and mixtur
of the primaries are set to match scene colors. Let
column of the61� 3 matrixP contain the three spectra
power distributions for a three primary monitor. The r
lationship between color mixture, defined by the 3-vec
�, and color response is equal to:

� = RtP� (3)

To address gamut size, we must look at (3) in mo
detail. We begin by pointing out that because the pow
cience, Systems, and Applications       35
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of light is non negative, the entries inC ,P and� must be
positive. The standard observer sensitivity functionsR
are also all positive. We will assume that all color sign
spectra, including the monitor phosphors, have bound
power. That is,

Z
!

C(�)d� � k (4)

without loss of generality we setk = 1. Rewriting (4),
in discrete terms:

61X
i=1

Ci � 1 (5)

Again without loss of generality, we assume that th
columns ofP sum to one (the power of the primary mix
tures is bounded). For now, we will assume that the c
efficient terms in� are positive and sum to one. Thus, a
mixtures have at most unit power and so our monitor h
bounded power output.

A measure of the range of colors we can see is t
volume gamut subtended in tristimulus space. For an
ditive system such as a CRT, this volume is proportion
to that of the tetrahedron subtended by the color p
maries (at maximum output power). Figure 1 shows t
tetrahedron formed when the three vectors correspond
to the three primaries intersect the spectral locus. Let
function v(M) return the volume spanned by the con
vex combinations of the columns of a matrixM. Since
� is the positive convex vector of mixture coefficients o
RtP , the volume of the monitor gamut is equal to:

monitor-gamut-volume= v(RtP) (6)

To find the largest monitor gamut we need to max
mize the expression in equation 6.

We must also ensure that our optimal monitor ca
display a reasonable range of saturated colors. The m
saturated colors that we can see are monochromatic
we restrict our attention to monochromatic primaries (la
we will consider whether this was really a good thing t
do).

If M is a3 �m matrix then theMi;j;k is the3 � 3
matrix comprising theith, jth andkth columns ofM.
The61 � 3 matrixP i;j;k denotes a monochromatic pri
mary matrix such that all entries ofP are 0, save theith,
jth andkth rows; [P i;j;k]ti;j;k = I (the3 � 3 identity
matrix). Clearly,
The Sixth Color Imaging Conference: Color S
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Figure 1: In any tristimulus space the three vectors that i
tersect the spectral locus at the prime-color wavelengths g
maximal gamut volume.

RtP i;j;k = Rt
i;j;k (7)

The maximum gamut monitor is found by maximiz
ing:

v(Rt
i;j;k) = (1=6) � jdeterminant(Rt

i;j;k)j

over i; j; k = 1; 2; � � � ; 61
(8)

We found thati = 11, j = 29 andk = 42 (cor-
responding to wavelengths 450nm, 540nm and 605n
maximized (8). It follows that the optimal monitor shou
have primaries anchored at these wavelengths.

So far we have carried out our analysis in tristimul
space to develop our argument, but the argument car
over easily to any tristimulus space, (such as cone
sponse space[3]), including some opponent-color spa
This generalization can be made because of the follow
mathematical fact:

It is a classical result in linear algebra[23] that th
volumes of two regions that are a linear transform ap
are related by the volume of the linear transform:

v(T M) = v(T ) � v(M) (9)

It follows from this fact that the optimization of Equa
tion 6 applies to any basis transformation of tristimul
cience, Systems, and Applications       36
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space, because the transformation incurs only a con
multiplier on the tristimulus volume subtended byRtP .

4. Visual efficiency

We say that a monitor is visually efficient if a stimulus
k Watts can be matched by primary mixture stimuli of
more than�k Watts, where� is close to one. Moreove
each individual mixture coefficient is constrained to
less than or equal to 1 (since we are assuming ou
power is bounded).

From equation (3) the mixture� required to match a
response vector� is equal to:

[RtP ]�1� = � (10)

The color matching functions for primariesP are the
mixture coefficients required to match each monoch
matic stimulus across the visible spectrum. The ma
ing functionsF t are a linear transform of the standa
observer functions:

F t = [RtP ]�1Rt (11)

The matching curves for the PC wavelength mon
are shown in Figure 2. By visual inspection, it is cle
that the largest absolute value of the matching curve
1 and so the maximum mixture coefficient, needed
match any monochromatic wavelength of light, is a
1.

In the context of this paper we assume that sc
stimuli have bounded power. What then is the maxim
power, per primary channel, required to match a n
monochromatic stimuli? Theith mixture coefficient is
the average value of thei matching function weighted b
the color signal spectrumC:

�i =

61X
j=1

CjFji (12)

To make�i large,C should have maximum powe
Without loss of generality let the magnitude ofC equal
1. In this case we can interpretC as being a probability
distribution and�i is the expected value (or weighted a
erage) of theith color matching function. By definition
the weighted average of a distribution of numbers m
fall between the maximum and minimum of the dist
bution. It follows then that the mixture coefficients a
The Sixth Color Imaging Conference: Color S
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Figure 2: Color matching functions derived from primarie
placed at wavelengths 450nm, 540nm and 605nm (assum
visual system sensitivities are linearly related to CIE 19312

o

matching curves)

bounded by the absolute maximum of the matching fun
tions. That is, one watt or less of each primary suffic
to match all color signal spectra of one watt or less.

Based on this suggestion of efficiency of the PC wa
lengths, it is plausible to conjecture that the most wa
efficient metamer of any tristimulus vector in the PC wa
length gamut is a linear combination of the PC wav
lengths. Strictly speaking, this conjecture is false. Cou
terexamples can be constructed as follows (see figure
For each wavelength�, find the wattages for the follow-
ing color-match: a positive combination of two PC wav
lengths (prime-color side of match), and 1 watt of wav
length� plus a positive wattage of the third PC wave
length (non-prime-color side of the match). Each chr
maticity so composed is on a leg of the prime-color tria
gle in chromaticity space. The wattages can be read
rectly from the color-matching functions in Figure 2. Th
primary whose wattage is negative is the ”third prim
color” and is part of the non-prime side of the match. T
other two primaries are on the prime side of the matc
Now define ”relative nonprime efficiency” as the powe
on the prime side of the match, divided by power o
the nonprime side. Values of� for which this efficiency
is greater than 1 are counterexamples to the conject
Figure 4 shows a plot of this efficiency as a function
�. It can be seen that the value 1.175 at 570nm is
maximum value of the nonprime efficiency (a clear cou
terexample), but that for most wavelengths this efficien
cience, Systems, and Applications       37
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Figure 3: Two metamers with chromaticity A, one compos
of energy at the green and blue prime-color wavelengths (c
nected by a dashed line) and the other composed of energ
the red prime-color wavelength and a non-prime wavelen
(connected by a solid line). The dashed line denotes the p
side of match, and the solid line denoted the non-prime side

is less than 1. The tendency here for the prime-color s
of the match to require fewer watts than the nonpri
side confirms the authors’ experience that exception
this rule tend to be neither very strong nor very num
ous. The PC wavelengths tend to be close to maxima
watt-efficiency.

Hence the PC wavelength monitor is visually ef
cient, not only per primary but in toto. This is an im
portant observation. In maximizing monitor gamut si
we restricted ourselves to monochromatic primaries
primary mixtures of 1 watt or less. It is straightforwa
to show that if the maximum wattage required to matc
color signal stimulus is always less than one watt then
gamut volume is maximized by a monitor with monoch
matic primaries. That is, we do not need to appeal to
uration in order to justify our choice of monochroma
primaries.

Are these rather nice properties a matter of cha
or is there some reason why the monitor that maximi
gamut size should also be visually efficient? In fa
chance is not at work here, but rather maximum gam
size implies visual efficiency.

To see that this is so, let us begin with an arbitra
color sensitivity functionsQ0 (perhaps based on an alte
nate (non CIE) standard observer). Let the waveleng
The Sixth Color Imaging Conference: Color
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a; b; c induce the largest gamut. LetQ denote the color
matching functions associated with monochromatic p
maries anchored at wavelengthsa; b; c. It follows that
Qt
a;b;c = I. Let us now suppose thatQ is not visually

efficient: there exists an entry in thedth row ofQ (d is
a wavelength other thana; b or c) that is bigger than1
(breaking our bounded power constraint).

It follows that the matrixQt
a;b;d has the form:

2
4 1 0 x

0 1 x
0 0 1 + �

3
5 (� > 1) (13)

wherex denotes a dummy variable and we have place
value greater than 1 in the third matching function. It
easy to show that the determinants ofQt

a;b;c andQt
a;b;d

are equal to 1 and(1 + �) respectively. It follows then
that v(Qt

a;b;d) > v(Qt
a;b;c). This cannot be the cas

sincea; b; c are those primary wavelengths that maximi
gamut size. We have a contradiction and so maxim
gamut sizedoesimply visual efficiency.

As noted in the introduction, the above result w
originally derived by looking at color matching and v
sual efficiency without considering gamut size[11]. On
the connection is seen between the volume-gamut
visual-efficiency definitions of PC wavelengths, the i
terchanging of definitions can be useful. Maximizin
over all three unit-power monochromatic lights the vo
ume subtended in tristimulus space, is an effective me
for findingthe PC wavelengths. This result is significa
in connecting several appearances of the PC wavelen
in color science and technology. Moreover, in the co
 Science, Systems, and Applications       38
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text of this paper, this result is now seen to link with t
question of gamut size.

5. Color balance and camera sensitivities

The color matching functionsF for the PC wavelength
primaries are functions of wavelength and interact w
color signal spectra in forming a mixture coefficient ve
tor in the same way that the standard observer funct
interact with the color signal spectra in forming a tri
timulus (� = F tC and� = RtC). It follows then that
the matching functions can be regarded as a set of vi
sensitivities.

Thinking of matching functions in this way helps in
struct how to build a camera to drive the PC wavelen
monitor. By definition, the color matching functionssee
the required mixture coefficients. That is,RtPF tC =
RtC. If instead a camera had standard observer se
tivities then the3� 3 linear transform[RtP ]�1 needs to
be applied to the camera response to recover the mix
coefficients (see equation 13). Avoiding the need fo
matrixing step is important since image noise increa
under linear transformation.

In designing a color camera it is important to co
sider the role played by illumination. Under different i
luminants a color camera records signals that have c
shifts as compared to the perceived color of the sc
being rendered. Thus the image must be color balan
prior to display. This balance operation is one of the fu
damental properties of color appearance (referred to
chromatic adaptation). The simplest, and most wid
used method, for discounting the illuminant is to m
the camera RGB measurements by scale factors inver
proportional to the response for a perfect white diffus
This operation renders white equal to(1; 1; 1) under all
illuminants. But does dividing by white also remove
luminant bias for other surfaces?

Let us examine this problem in more detail. First, w
express the color signalC(�) as a product of illumina-
tion,E(�) and reflectanceR(�): C(�) = E(�)R(�).
Now let us assume thatX(�) = �(�� �X); that is the
long wave sensor in (1) is a delta function anchored
wavelength�X (a delta function is non zero only at th
anchor wavelength). Similarly the medium and sho
wave standard observer responses are the delta func
�(�� �Y ) and�(�� �Z). Rewriting equation (1):
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x =
R
!
�(�� �X )E(�)R(�)d� = E(�X )R(�X )

y =
R
!
�(�� �Y )E(�)R(�)d� = E(�Y )R(�Y )

z =
R
!
�(�� �Z)E(�)R(�)d� = E(�Z)R(�Z)

(14)

Notice with respect to delta functions the integrals va
ish. Sensor response is equal to the color signal at
anchor wavelength.

The response of a perfect white diffusing surfac
(R(�) = 1) is (E(�X ), E(�Y ); E(�Z)) and so it fol-
lows that dividing by white cancels illumination for a
reflectances:

E(�X )R(�X )
E(�X ) = R(�X)

E(�Y )R(�Y )
E(�Y )

= R(�Y )
E(�Z)R(�Z )

E(�Z )
= R(�Z)

(15)

It has been shown that, for unrestricted reflectan
white-balancing exactly discounts illumination if and o
if delta functions are used[6]. Indeed, delta functions
the only type of sensor for which a linear model of
lumination change is justified[24]. Camera sensitiviti
made up of delta functions would, of course, have u
acceptable levels of metamerism. So, for the purpose
discounting illumination we wish to transform the matc
ing functions to behave more like delta functions.

Let us develop an error measure of the closenes
the matching functions, or linear transforms thereof,
delta functions. IfA andB are matrices of device sens
tivities, then the best linear transformT that minimizes
jBT �Aj, in a least-square sense, is defined by the Mo
Penrose inverse:T = [BtB]�1BtA. Let P i;j;k de-
note a61 � 3 matrix of device sensitivities where th
first, second and third columns contain delta functio
anchored at wavelengthsi, j andk. It is easy to show
that [P i;j;k]tP i;j;k = I. P i;j;k mapped to the standar
observer sensitivitiesR in a least-squares sense is equ
to:

P i;j;k[P i;j;k]tR � R (16)

If jP i;j;k[P i;j;k]tRj is close tojRj then it follows
that the set of delta functionsP i;j;k samples light sim-
ilarly to the standard observer (and vice versa). Note t
we are not comparing (differencing) the sensor sets
rather determining the closeness of the sensor sets b
amining the closeness of their respective magnitudes
first glance such an approach appears bizarre. Howe
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it is justified because the two sensor sets are relate
a least-squares fit. As the fit gets better the magnitu
must converge.

To calculatej:j we begin by calculating the covar
ance ellipsoid associated withP i;j;k[P i;j;k]tR

cov(M) =
MtM

61
(17)

and

cov(P i;j;k[P i;j;k]tR) =
RtP i;j;k[P i;j;k]tR

61
(18)

If R samples light like a particular delta function s
then the magnitude of its covariance matrix should
proximate the magnitude of the covariance matrix of
standard observer functions themselves. That is,

jRtP i;j;k[P i;j;k]tRj � jRtRj (19)

Using the volume functionv() (defined at Equation
6) as our measure of magnitudej:j, we seek to maximize

v(RtP i;j;k[P i;j;k]tR)

v(RtR)
(20)

Inserting identity (7) and using (9) this simplifies t

v(Rt
i;j;k)

2

v(RtR)
(21)

For all triplets of narrow-band functions,v(RtR) is
constant. It follows then that (21) is maximized when
is maximized. That is the volumetric argument that
livers the monitor primaries that maximizes gamut s
also delivers the narrow band sensors that behave
portionally most like the human visual system. An
tractive feature of this argument is that the selection
narrow band sensors is not contingent on the partic
basis (linear transform) of the matching functions use

However, as a final step we must actually tie do
the particular basis that behaves like delta function.
argument, set forth in (14) and (15) is basis spec
From (16),P i;j;k[P i;j;k]tR � R. It follows then that

[P i;j;k]t � [RtP i;j;k]�1Rt (22)
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That is the optimal camera functions, from a color ba
ancing perspective, are color matching functions for P
wavelengths primaries; these are shown in Figure 2.

Of course the functions in figure 2 are still far from
being narrow band and so we might wonder whether th
really behave like narrow band sensors. Simulations[2
have shown that this is in fact the case.

6. This work in context

The PC wavelengths have been reappearing for some t
in a wide range of literature relating to colorimetry.

The chromaticities of the phosphors and of the whi
point prescribed by standards bodies (for television tec
nology, computer imaging, digital photography,and oth
fields) show salience of the PC wavelengths. This salie
is to be seen by examining the dominant wavelength
each phosphor–i.e., the wavelength obtained by extra
olating the line from the white point through the pri-
mary until it is incident on the spectrum locus. This
construction is easily done using the data and figure
Poynton’s book[26]. The following phosphor sets are in
cluded there: NTSC primaries (developed in 1953 no
obsolete); the current ITU-R BT.709 standard; and th
SMPTE 240M and EBU standards.

It is remarkable that, in every case, the dominant wa
lengths of the phosphor primaries are very close to t
PC wavelengths, except for a discrepancy between t
NTSC and the other standards (especially in the gree
In addition to gamut size and visual efficiency discusse
in previous sections the above salience has theoreti
significance related to chromatic adaptation: scaling t
signals from the primaries is equivalent to a Von Krie
transformation of the tristimulus values using color-ma
ching functions that would have been associated with t
primaries by a color-matching experiment. Hence th
white-point corrections are calculated in a tristimulus ba
sis for which this kind of adaptation ensures the greate
color constancy. In fact, Hubel and Finlayson[27] hav
given psychophysical evidence that chromatic adaptati
using the Sharp transformations gives better correlati
to chromatic adaptation in the visual system than eith
the cone sensitivities or CIE tristimulus functions (as us
in color appearance models). They also showed that m
ing functions derived using the Sharp transformation
were almost identical to matching functions derived from
a standard set of primaries[28].

Other literature also reveals salience of the PC wav
cience, Systems, and Applications       40
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lengths. MacAdam[29] noted that the moment per w
of a monochromatic light (defined as the power of
complement needed to neutralize one watt of the lig
is greatest when the wavelength of the monochrom
light is at 448 or 605nm; Thornton[1] continued the co
plementary lights into the purple (two monochroma
lights) and found a maximum moment-per-watt at
green PC wavelength (540nm). Wright[8] noted that n
ural metameric reflectance spectra tend to cross each
near three particular wavelengths, which Thornton[9,
later recognized as the PC wavelengths. By using la
lines near the PC wavelengths Hubel[30] recorded a c
reflection hologram which replayed a color three dim
sional scene by diffraction of incident white-light in
PC wavelength components. A theoretical study exte
ing Thornton’s work and applying it to holography al
gave wavelengths near the PC wavelengths as optim
for both gamut area and color error[31]. Upon examin
the first four principal components of daylight, Brill[32
found that the linear combination of these compone
that is orthogonal to all the color-matching functions h
its zero-crossings near the PC wavelengths. Neugeba
found a similar salience of the PC wavelengths wh
he examined the least-square residual of a narrow-b
camera sensitivity function compared with the best lin
combination of the CIE 1931 color-matching function
When plotted as a function of the dominant wavelen
of the camera-sensitivity function, the residual shows
distinct minima near the PC wavelengths.

The PC wavelengths have also found other tech
logical applications besides color imaging. For examp
Thornton’s design of fluorescent lamps with concen
tions of light at the PC wavelengths has led to subs
tial commercial success because of the superior co
rendering properties as well as their visual efficiency.
example, metamerism is minimized by confining lig
to these wavelengths, because naturally metameric
flectances tend to cross at these wavelengths. Fin
a design of glasses with transmission mainly near th
wavelengths (Thornton, [34]) allows restriction of the t
tal radiation into the eye without compromising vision

7. Conclusion

All this evidence points to the importance of the prim
color wavelengths for color imaging and our understa
ing of the visual system. In this paper we have used
maximum-volume proof to bring a formal definition t
prime-color wavelengths and shown that these also im
The Sixth Color Imaging Conference: Color S
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visual efficiency and an optimal space for color bala
ing operations. Using such a framework, we can be
to understand how these and many other seemingly
parate concepts are interrelated by the prime-color wa
lengths. There is clear benefit to choosing the prima
of color imaging systems at the prime-color chromat
ties.
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