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ABSTRACT

The simplicity and inherent robustness of the Philips 3D-LCD, both in manufacturing and usage, make it highly suitable for
a cost effective, mass-market autostereoscopic display For successful adoption in a wide range of applications, efficient 3D
image preparation is very important.  A generic expression for the relation between LCD pixels and the multiple perspective
views is derived that can be used in the image preparation for different 3D-LCD systems. This paper then describes two
approaches to 3D image preparation. One is an intuitive graphical user interface and the second is at source code
programming level as an extension to the existing OpenGL 3D graphics API.  Using the latter we examine the computer
overhead of the 3D image preparation process.
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1. INTRODUCTION

The Philips multiview 3D-LCD provides a truly autostereoscopic
display. It requires no artificial devices, allows freedom of
movement in front of the display and can be seen by any number of
people at the same time.

In the 3D-LCD, a sheet of cylindrical lenses (lenticulars) is placed
on top of an LCD in such a way that the LCD image plane is
located at the focal plane of the lenses. The effect of this
arrangement is that different LCD pixels located at different
positions underneath the lenticulars fill the lenses when viewed
from different directions. Provided these pixels are loaded with
suitable stereo information, a 3D stereo effect is obtained in which
left and right eyes see different but matching information.

Traditionally the lenticular approach to 3D-LCD has two important
drawbacks. Firstly it suffers from a Moiré-like effect in which the
user sees dark bands on the screen which result from the lenticular
imaging of the black space between the LCD pixels 1. Secondly, it
makes uneven use of the horizontal and vertical pixel resolution in
the LCD panel, typically the resolution in each eye is obtained by
dividing the horizontal LCD pixel count  by the number of views
that is offered, without affecting at all the vertical resolution2.

Our approach to lenticular 3D-LCD solves both these problems by
not placing the lenticular cylinder lenses vertical and parallel to the
LCD column direction, but by slanting them at a small angle. This
simple device has the effect of dissolving the Moiré-like black
bands and also means that both the horizontal and vertical pixel
resolution are used to populate the individual views that reach the
user's eyes. For example, in a 7 view system3 the horizontal
resolution of each view is reduced by a factor 2.5 from the original
LCD and the vertical resolution by a factor 3. Hence the overall
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Figure 1 Slanted Lenticular 3D-LCD



resolution reduction of a factor 7 is achieved by both a horizontal and vertical resolution reduction by factors nearing √7.
Figure 1 illustrates the slanted lenticular 3D-LCD for this 7 view system. The vertical rectangles represent the LCD R-G-B
colour triplets and the numbers indicate the view number that the individual sub-pixel belongs to. Line A represents the
location of points on the LCD imaged by the lenticular into a specific direction; the direction of view 3. Similarly, line C
represents the points along view 4. As can be seen, because of the lenticular slant, the pixel view numbers appear in a
interlocking 2D pattern and it is this 2D topography that means that both the horizontal and vertical LCD pixel resolution is
used to constitute the different views.

In this paper we will discuss the image preparation process for the 3D-LCD. We will do this by first deriving a generic
expression for the pixel mapping relation between LCD pixels and the view number the pixels belong to in a multiview
system. We will then discuss two ways in which this expression can be used. Firstly through a graphical user interface in
which image manipulation takes place on the computer desktop through intuitive point and click actions. Secondly at the
application programmer's source coding level in which the 3D-LCD functionality can be achieved through a few simple
extensions to existing 3D graphics software libraries. All these methods of 3D-LCD image preparation make use of existing
monoscopic 3D computer graphics capabilities. These software architectures were designed and optimized for the
monoscopic rendering process and there are obvious drawbacks in using these for multiview 3D-LCD. However, as we will
show, the critical measure in multiview rendering process is not the number of views, but the total number of pixels
rendered.

2. MULTIVIEW PIXEL MAPPING

To determine the view number of a given point x,y in the plane of the LCD, we need to know the horizontal offset of that
point with respect to the edge of the lenticular under which it is positioned. Using the micro lens magnification m and other
definitions apparent from figure 2, this offset is given by
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the projection of that pitch onto the LCD plane using the
viewing position as origin. The magnification m can be
expressed in terms of the viewing distance D and the lens
focal length f, as m+1 = f D. To simplify things, we divide
the projected horizontal lens pitch by the pixel pitch of the
LCD ph and call this the number of views per lens X.
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Note that X is the number of views per lens measured
along a single row of the LCD and is different from the
total number of views in the multiview system. For
instance, in the 7 view example of figure 1, X=3.5.

For a data graphic LCD in which pixels are arranged as an
orthogonal array of RGB colour triplets, the coordinates
x,y can be expressed in terms of the pixel indices k,l  and the
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horizontal pixel pitch ph as follows:
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Note that the indices k,l point to individual red, green or blue (sub) pixels and not to colour triplets. Other relationships
between pixel indices and x,y can be written down for displays with different pixel layouts such as video and projection
displays.
Dividing the expression for xoffset above by the projected horizontal lens pitch, inserting the definitions for X,k  and l, and
introducing Ntot, the total number of views, we find for the view number N of each sub pixel k,l
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This equation can be used to calculate the view number N  for each pixel k,l which can then be used to assign the appropriate
image data to the pixel. The parameter koffset is introduced into the formula to accommodate an arbitrary horizontal shift of
the lenticular lens array with respect to the LCD.

For specific sets of parameters, for instance the 7 view example above (koffset=0, α=9.4623°, X=3.5 and Ntot=7), the view
number N will always be an integer as there are only 7 different positions in which the LCD sub pixels can be located
relative to the lenticular lens. For arbitrary values of α and X and finite values of Ntot, N will not be an integer. In that case,
in the actual mapping, we simply take the nearest integer of N to decide from which input image to take the information for
a given pixel.

Expression (5) is generic and can be used to describe almost any lenticular/LCD combination. For example, α=0 describes
traditional non-slanted lenticular 3D displays4. For α=9.4623°, X=1 and Ntot=2 it provides a pattern of horizontally
interlaced views used in some holographic displays5,6. It is also worthwhile to note that using this formula, four parameters
describe the mapping between pixels in the perspective views and the 3D-LCD. These are X, α, Ntot and koffset. Using an
interactive tool these can be set for any lenticular/LCD combination and then used to describe the view interlacing or
‘weaving’ process.

An important issue in the slanted lenticular arrangement is the appearance of the colour stripes in each view. In a data
graphic LCD the colour filters are arranged in vertical Red-Green-Blue stripes. However, because of the slant, the colours
present themselves in the individual views in stripes at varying angles to the vertical. Indeed, for 3,6 and 12 view systems
the colours appear in wide horizontal stripes.  We can measure the pitch of these colour stripes for 3D-LCD systems with

differing number of views. Figure 3 shows the result by
showing the stripe pitch measured in LCD pixel units as
function of the view number. The slant angle α is fixed at
atan(1/6)=9.4623°. Also indicated in figure 3 are the
optimum square root line and the worst case unity line.
The unity line represents the case for a conventional,
non-slanted lenticular arrangement in which the
horizontal size of the pixels grows linearly with the
number of views. As we can see in figure 3, the colour
stripe pitch of the slanted lenticular 3D-LCD oscillates
between these two extremes as function of number of
views, with minima at 4 and 9 views and maxima at 3
and 6 views. This feature provides an interesting design
consideration; although a 7 view system has a higher
pixel count per view, the smaller colour stripe pitch of an
8 or 9 view system will give those systems a better visual
appearance.
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The versatility of the 3D-LCD design makes it suitable for a large number of applications  in which  a number 3D image
sources offer material for display. These range from complex multiview video camera systems 7,8,9, post processed stereo or
monoscopic video footage, 3D vector model information in for instance VRML format10 and scientific point cloud data11 or
slice information such as CT scans.

All these image sources can be used to provide, extract or compute different monoscopic 2D images that are used by the
3D-LCD multiview display to provide a 3D image. In that sense the Philips 3D-LCD is principally a stereoscopic display in
the sense that it creates a 3D illusion by providing different 2D images to the user’s eyes. In the remaining sections of this
paper we will discuss some of the issues involved in this image preparation process.

3. IMAGE PREPARATION - GRAPHICAL USER INTERFACE

There are a number of different environments in which image preparation for the 3D display can take place. In this paper we
will consider two. One environment is the computer desktop in which the  graphical user interface of a custom computer
application is used to manipulate images and image sources to create 3D images. Another environment is the programming
environment in which the application programmer writes lines of code to cause a computer program that otherwise would
create only monoscopic 3D computer graphics, to create multiview 3D images directly.  Identification of these two
environments is not a comprehensive classification. In particular multiview image preparation in video production and
broadcast TV fall well outside it. However, while the principles that will be discussed below apply most directly to
computer graphics, some of the conclusions are of sufficient generality to be of interest in other fields also.

A computer program called 'Octopus Multiview Editor' has been developed to allow the user to manipulate sets of 2D
pictures to create multiview 3D images for the 3D-LCD. It aims to provide both intuitive and instructive access to the 3D-
LCD functionality by showing how individual images can be used or mapped in the 3D-LCD displays and by suggesting
how sets of images can be used to create complete multiview 3D pictures.

Figure 4 illustrates the overall data flow from the 2D image domain to the 3D image domain. At the top are the different
image sources; bitmaps or 3D vector models on the computer hard drive or remote server, (multiple) video cameras and
image data from 3rd party applications running on external hosts. All these sources provide different monoscopic perspective

images, which are assigned to the 3D display using the
generic multiview pixel mapping expression, discussed
above.

The program creates not just one, but two windows on the
desktop. One is the 2D Control Port in which the multiple
(2D) image sources are opened just like any other
application that handles bitmaps, video movies, cameras or
Internet connections. These individual images can then be
assigned to different view numbers by simply pressing
appropriate buttons on a toolbar. The result is visible in the
second window that the program creates on the desktop; the
3D View Port, which is intended to be viewed through the
lenticular sheet. Hence the graphical design of the program
directly supports the concept that image preparation for the
3D-LCD is mainly about combining multiple 2D images
into a single 3D image. It also underscores that the image
quality of the 3D image is controlled by the image quality of
the individual 2D views that constitute it.

Whilst the basic units of  the program are the individual 2D
images, these images can often be grouped in 'sets' because
they share  important characteristics. The Octopus
Multiview Editor offers different tools to create and manage
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such sets of images. One example is different camera shots of a single VRML scene. The program will create these images
in different sub windows in the 2D Control Port, each with a progressive horizontal camera angle and position offset, and
assign them to a staircase of view numbers. This will result in an overall 3D view of the VRML scene in the 3D View Port,
all through the execution of a single command. To control the quality of the 3D image, the program user can alter the
characteristics of the individual views, or control global 'set' parameters such as camera convergence distance. Also VRML
interactivity and camera position control is possible through the master ‘Examiner’ window, which the other image
windows will 'follow'. Thus the program allows the user to conceptually shift gear from working with individual images, to
sets of images, or just to the 3D scene itself through the Examiner window.

Another example of  'set' generation is that of frame delays into video movies.  Akin to the Pulfrich effect, for suitable
source material, the frame delay can be used to provide the parallax required for 3D display. By creating multiple images of
the movie sequence, each with progressive frame delay, a 'set' of windows is created that can be assigned to a staircase of
view numbers, resulting in a single 3D image. As before, the user can choose to alter the image characteristics of the
individual to change the 3D image or to control the overall animation properties of the movie. Again allowing different
levels at which to approach the 3D image preparation process.

4. IMAGE PREPARATION - PROGRAMMING INTERFACE

The merits of a graphical user interface for 3D-LCD image preparation are considerable in terms of its versatility and
instructive value. However, once, within a given application context, the characteristics of 3D image preparation have been
explored and the requirements defined, it is often desirable  to incorporate the 3D-LCD capability into the end user
application package. Such applications may be Internet browser software (plug-ins), games, presentation software and
others. They often exist already in a monoscopic (2D) version and there is a need to adapt them for the 3D-LCD. There are
different levels at which such adaptation might be made. Figure 5 illustrates the different software layers of toolkits,
graphics API (application programming interface) and operating systems that a program for 3D graphics may or may not
make use off. From this we can identify different levels at which an adaptation for 3D display can be made.

1) Within the Operating system. As additional graphics drivers or indeed designed into the operating system itself. This may
appear to be the most desirable level because it implies that existing applications can benefit from the 3D display
functionality without originally having been written for it. However it is also the most challenging because the information
required to create a good stereoscopic image (i.e. depth) is often not available. There have been some attempts to overcome
this problem related to the general 2D/3D conversion issues. In the future this issue may be alleviated as the 2D desktop
metaphor makes way for 3D-world representation on the computer.

2) Within an API such as OpenGL12. This is the ideal level because all the information required for stereoscopy is available.
Whereas it would be ideal to do this within the API itself, copyright and license issues prevent this in the short term and
instead the 3D-LCD functionality can be offered as an extension or utility to the API..

3) Within a 3D toolkit such as Open Inventor13 or VTK14 (Visualization Toolkit). The advantage of this is that the extension
can be made much more sophisticated,
making it easier to transform the
versatility of the Graphical User
Interface into an equally versatile
programming interface.
From the application programmers
point of view 3D-LCD adaptation at
level 3 is very easy and we have
successfully done this for both Open
Inventor and VTK. However, the
constituency for these is much smaller
than that for the 3D APIs, particularly
OpenGL.  It is therefore for the latter
that we see the most widespread use of
a programming interface to 3D-LCD.



5. REPEATED
RENDERING PIPELINES

At a general level any 3D rendering
program will contain the repeated
execution of a few basic steps.
These are 1) Handling user input
and events inside the 3D world, 2)
Pointing the camera at the scene
and 3) Rendering the scene. In
addition to this, most programs use
double buffering in which at step 3
the scene is rendered in a hidden
back buffer and a further step is
necessary 4) swapping front and
back screen buffer. The execution
of step 3 is often referred to as the
rendering pipe line; the process
whereby the graphics engine takes
the vertices, light and camera
position as indicated in figure 6a,
and performs transformations,
clipping, culling and filling in a
rendering pipline.

One way in which to approach the
use of a 3D-LCD, is to force the

graphics engine to go through the pipeline not once, but several times. As illustrated in figure 6b, each time with the same
vertices and lights, but with a different camera position. Each offset slightly differently from the main camera direction. The
results of these different scene renders are collected and combined into the 3D-LCD to provide a 3D picture. Although this
process may appear complicated and inefficient, it is actually neither. We will leave the latter point for a section below. The
former issue is dealt with now.

A simplified but nevertheless typical piece of a 3D graphics program is
shown in figure 7a. The MyDisplayFunc is called each time a new screen
needs to be created. It does that by executing or simulating the steps
outlined above. Moving the camera (steps 1 and 2), drawing the scene
using OpenGL (step 3) and swapping the font and back buffer (step 4).

To change this example into a 3D-LCD capable program the function
MyDrawScene() needs to be called several times. Each time with a slightly
different camera position and the results stored, managed and placed in the
back screen buffer as illustrated in figure 6b. This is achieved by using a
custom written function glP3D_MultiViewCamera() which  handles all
these tasks by simply wrapping the MyDrawScene function in a while
loop. The function will manipulate the camera position and cause multiple
execution of the MyDrawScene function by returning TRUE several times.
After the last required call to MyDrawScene the function performs the
pixel mapping task, writes the result into the back buffer and returns
FALSE to allow escape from the while loop and a call to MySwapBuffer to
make the result visible from the screen.

void  MyDisplayFunc(void)
{
  MyMoveCamera();
  MyDrawScene();
  MySwapBuffers();
}

Figure 7a - Standard 3D graphics code
-------------------------------------------------
void  MyDisplayFunc(void)
{
   MyMoveCamera ();
   while(glP3D_MultiViewCamera ()){

MyDrawScene();
   }
   MySwapBuffers();
}

Figure 7b 3D-LCD Adapted code
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A detailed description of the glP3D_MultiViewCamera() falls outside the scope of this paper, but the function and other
helper functions to control the number of images generated, the pixel mapping ( number of views) etc, are written in
standard C and have been used on both Unix and PC platforms. Note that no modifications are necessary to OpenGL code in
MyDrawScene() or any other function in the program application code.

6. MULTIVIEW RENDERING PERFORMANCE

Having discussed the relative simplicity with which 3D-LCD functionality can be added to an application program, we will
now address the computational overhead of this. To obtain a quantitative measure for this, we have measured the frame rate
of an application that uses the example code in figure 7b as function of the number of views. The result is shown in figure 8.
The test program renders a medium complex scene that includes a texture-mapped background. An XGA display window
was used of 1024x768 pixels. The unit on the y-axis in figure 8 is the render time per pixel. The experiment was performed
on a 400MHz PC with Windows95/OSR2. The PC platform was chosen because it is the most common platform that the
3D-LCD is used on. Two different conditions were used in the experiment. In one, the size of each rendered view was kept
constant as the number of views was increased (the dashed line in figure 8). In the other the number of pixels rendered in
each view was reduced in proportion to the number of views. This keeps the total number of pixels rendered constant. The
full line in figure 8 indicates this result. The number of views on the x-axis ranges from 0 to 12. ‘0 views’ corresponds to no
multiview functionality, i.e. program execution with code as in figure 7a or the pipeline in figure 6a. ‘1 view’ corresponds to
the use of the repeated pipeline mode with just one view image. For 0 and 1 view there is no difference between the two
experimental conditions and the pixel rendering times are identical. For higher view numbers, however, there is a heavy
multiview rendering performance penalty of 1.9 µs/pixel/view for constant rendered view size. Under those conditions it
takes 9 times longer to create an 8 view 3D-LCD image than a monoscopic picture. Under the 2nd condition however, when
we render only as many pixels as we need in the final image, the multiview overhead is much smaller at 0.21 µs/pixel/view.
Indeed, in that case rendering an 8 view image is only 40% times slower than the 0 view monoscopic rendering.

Consider the aspects of the multiview rendering process that will cause a performance penalty in comparison with the
standard monoscopic rendering process. These are: Pure rendering overhead, Buffer copying and writing, Weaving or pixel
mapping overhead. The first issue simply refers to the computational time spend in the OpenGL graphics library functions
that draw the different views i.e. the time spent in the different repeated rendering pipelines. The experiment above
demonstrates the importance of the total number of pixels rendered which indicates that the pixel filling can provide a
significant bottleneck in the pipelines. The 2nd issue relates to the fact that we need to transfer the data out of the back screen

buffer after each render and write the
final result back into it. The final point
refers to the work using the generic
pixel mapping expression above to
assign the pixels from the individual
views to the final 3D picture. Table 1
illustrates how the computational
overhead is divided up between these
tasks. These percentages were measured
for 8 views, constant total rendered
pixels. As we can see the bulk of the
work is still in the OpenGL graphics
library. The specific multiview tasks;
pixel copying, writing and mapping,
take up a relatively smaller part of the
time.

We have also performed these
experiments on a Silicon Graphics Inc
(SGI) Octane confirming the same
general trends on this platform. The high
degree of hardware acceleration on the
SGI means however that the rendering is

Figure 8 Multiview Rendering Performance
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performed very efficiently and the total number of rendered pixels
is much less important that it was on the PC. The second column in
table 1 illustrates the task percentages for this case.  The relative
load of the pixel mapping or weaving tasks is now much larger but
the rendering pipelines still take up a significant amount of time.
This probably means that in this case the pipeline bottleneck lies
else where and we look forward to investigate this issue in the
future.

7. CONCLUSIONS

In this paper we have discussed a 3D image preparation process that is based on  a generic expression for multiview pixel
mapping. This multiview pixel mapping was developed for the Philips 3D-LCD but can also be used to describe many other
3D display systems. The generality and versatility of the expression means that it can be used for many different
applications, taking a wide range of image sources as input to it. The mechanics of the pixel mapping, and the image
material that is required as input to it, can be explored firstly through a graphical user interface and secondly as an extension
of well known 3D programming APIs, making it easy to adapt existing graphics applications to the 3D-LCD.

Although there is a significant performance overhead for the multiview image generation, this overhead is not as severe as
might be expected. In particular if the total number of pixels rendered by the graphics engine is limited only to the required
minimum, a frame rate reduction of only 40% can be achieved. Specific multiview tasks such a pixel mapping and buffer
management contribute a relatively small factor to this reduction. We are hopeful that when in the future we will see the
integration of the multiview functionality into 3D graphics engines, the resultant optimizations will lead to improved
multiview rendering capabilities.
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Table 1 Multiview Tasks

Task PC SGI
Rendering 56 % 24 %
Pixel Copy 14 % 22 %
Pixel Write 15 % 1 %
Pixel Mapping 9   % 50 %


