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Chapter 2: Light as Waves

What we think of as “light” is actually a ripple-like disturbance of combined
electrical and magnetic fields (in the so-called “classical” or “non-quantum-
mechanical approximation).  As such, every good optics book dutifully begins
with a discussion of Maxwell's equations, which can also be widely found on
T-shirts around MIT1,2,3.  The electric (and magnetic) fields are vectors, E and
H respectively, indicating the directions between lower and higher electrical and
magnetic potentials.  Everything follows from these mathematical elaborations
by James Clerk Maxwell of observations by Michael Faraday, that there is a
coupling of the spatial variations of one of the fields (denoted by the “curl” or
“div” of its vector) and the time variation of the other field, and vice versa (the
first two equations).  Either field may be stimulated—by a temporal variation of
charge density in one case, and of current in the other—giving rise to a wave
that immediately couples one to the other.  Together, the electric and magnetic
fields propagate away from the source like ripples in a pond with characteristic
shapes that depend on how the disturbance was started, a manifestation of the
wave equation that can be derived from Maxwell’s equations.  In this chapter,
we will first consider some aspects of the shapes of the waves, then their time
variations, and finally some underlying aspects of the electromagnetic waves
themselves.

Wave Shapes
The term “wave” really refers to “a self-propagating disturbance” such that a
disturbance at some location, such as from a pebble dropped into a pond,
produces a disturbance somewhere else at a later time, without any molecules of
water actually traveling from the first place to the second.  Physicists often refer
to those familiar ripples in a pond when talking about waves, and use ripple
tanks to illustrate their thoughts, but water-wave propagation is actually quite a
complex problem, even in two dimensions.  We will be concerned instead with
light waves propagating in three-dimensional space, such as from the point-like
focus of a laser beam.  There are three simple shapes of light waves that will
cover most of the cases we will have to deal with.

Spherical Waves:
If the wave source is a spark-like disturbance at an idealized point in space, say
at (x,y,z) = (0,0,0), then the resulting pulsed electrical and magnetic disturbances
will spread out like a sphere, with the radius of the sphere increasing linearly
with time at a rate we call the “speed of light,” which is determined by the
properties of the medium (typically air, which is close enough to a vacuum for
most purposes).  The speed of light in a medium is given by one over the square
root of the product of the dielectric constant and magnetic permittivity of the
medium, and is equal to 3 x 108 meters/sec in a vacuum.  In denser media, such
as air, water, or glass, the dielectric constant increases and the waves slow
down.  The ratio of the speed in a vacuum to the speed in a particular medium is
called the refractive index of that medium, about which we will hear more later.
For the moment, let’s consider waves in a uniform medium with a refractive
index of unity (space, or air).

We have to be a little careful about the definition of the term “wavefront!”  For
a spark source, we can think of the wave as defined by a small interval in time
when the electric field is non-zero, a “spike” in other words, at a single point in
space.  Maxwell’s equations say that the resulting pulse-like disturbance will
move outward from that point at the same speed in all directions, forming an
expanding sphere.  The pulse intensity cannot actually be the same in all
directions, but let’s imagine for the moment that it is (we are usually interested
in only a fairly small range of angles anyway, where it can be virtually
constant).  As the wave spreads out, its amplitude drops as one over the distance
(this will provide “conservation of energy,” to be discussed later on), but the
“spike” stays a “spike” as it moves outward.  We will think of the locations in
space where we could observe the spike at time t as describing a sphere of radius
r, where
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r x y z t= + + = ⋅2 2 2 c  ,  (1)

and c is the speed of light, mentioned above, and t is the time since the spark.
This sphere is what we will call the wavefront.  The disturbance moves quickly
outward, always moving perpendicularly to the wavefront at every location, so
that the radius of curvature of the spherical wavefront increases as the wave
moves outward, and is the same everywhere on the wavefront.

What about “rays?”  We sometimes think of a point of light as emitting
imaginary particles outward, which travel at a constant speed, their trajectories
described by straight lines called “rays.”  Our emphasis in this course will be on
the description of light as a     wave    phenomenon instead, in which the relative
time properties of the light energy headed in various directions becomes very
important, which information the   ray    description generally loses.  Nevertheless,
we can draw arrows perpendicular to the spherical wavefront at any location
and get a good prediction of where the energy will be found an instant later
(except in birefringent crystals); it is these arrows that we will refer to as “rays”
when we sketch what is going on in an experiment.

Sketches are important to optickers and holographers alike, and become
problematical because we have only a two-dimensional paper surface to sketch
them upon!  Usually, these sketches will represent slices through a 3-D volume,
although we will also attempt isometric-like views of a scene (usually a layout
of optical components), which is a projection through a 3-D volume—quite a
different kettle of fish (the differences will usually be clear from the context).
In most of what we do, light will be traveling from left to right (considered to
be good optical design practice), and we will adopt the z-axis as the horizontal
axis, with the x-axis pointing upwards.  So, we can attempt a sketch of a
spherical wave as seen at a single instant of time as a “snapshot” of a slice-view
of the spike, which simply looks like a circle.
If we take a sequence of such “snapshots” at equally-spaced intervals of time,
we get a series of concentric rings, also equally spaced in radius.
The direction of energy propagation is everywhere perpendicular to the surface
of the spherical wave, so the wavefront reproduces itself an instant later as a
sphere of larger radius.

Mathematically, if we describe the source “pulse” as some function, p(t), at the
center, then the pulse arrives at a radius r after a delay time given by r/c, and
falls off in strength as 1/r .  This can be expressed as an electric field of strength
E(r) given by
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Plane Waves:
After a spherical wavefront has propagated for a very long distance, its
wavefronts become effectively flat or “planar” over the area of interest to us
(which is to say that its radius of curvature has become nearly infinite), so we
refer to them as “plane” waves.  For example, the light from a nearby star (other
than our own sun, which is too wide to be a point-like source) arrives as a plane
wave (of course, if we changed locations in the galaxy, we would find that the
angle of the plane wave would change, and that it is truly spherical).  Thus plane
waves are really an abstraction, but physicists are very fond of them for
simplifying analyses, and we have to take them into account as an interesting
limiting case of a spherical wave.  Because the source location, which would
ordinarily define the center of our optical coordinate system, is a long ways
away, we refer instead to the local inclination of the wavefront as observed at
the new center of our experimental coordinate system.  We describe the plane
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wavefront as having an angle, θ, measured between the wavefront normal and

the horizontal or z-axis.

The location of this wavefront at time t=0, shown first, is given by the x,z
locations of equal electrical voltage,

x z

x z

= −
+ =

tan

sin cos .
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θ θ
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0
  (4)

A short time, ∆t, later, the wavefront will have moved a distance d = c·∆t

perpendicularly to itself, and the equation for the wavefront becomes

x z tsin cosθ θ+ = ⋅c ∆  .  (5)

Mathematically, then, if the source pulse has the form p(t) at the (x,y,z) = (0,0,0)
point, then the field seen at any other location (x,y,z) is retarded by d/c, where d
is the shortest distance between the origin and the wavefront passing through the
observation point (the perpendicular distance from the origin to the wavefront)

d x z= +sin cosθ θ  .  (6)

The magnitude of the pulse does not diminish because the wavefront is no
longer “spreading out” as it would for a spherical wave; the wave amplitude is
constant as it moves ahead:

E x y z t p t
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c
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 .  (7)

Cylindrical Waves:
Later on, we will encounter waves that have different curvatures in different
directions, called astigmatic waves.  A simple first case of one is a cylindrical
wave, which we can think of as propagating from a surge of current in an
infinitely long wire; let’s say the wire is stretched in the y-direction.  The
wavefront will lift off of the wire as a cylindrical tube, and propagate outward
as a tube of constantly increasing radius equal to the speed of light times the
propagation time.  At some distance from the wire, let’s say one meter, the
wavefront will be curved around the wire in one direction, but not curved in the
other.  These are hard to sketch clearly, but an isometric-style projected view
would look like this:
Mathematically, it would have a representation like
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Light as REPETITIVE Waves:
So far, we have considered a single pulse-like wave propagating through 3-D
space, but visible light is a repetitive wave, which is what makes holography
possible too!  In the case of light, the pulses are smoothed out so that the electric
and magnetic fields are smoothly varying functions of time.  If we stood at a
particular point in space and measured the electric field of a wave passing by
(spherical or plane), we might observe a voltage as seen here:

Mathematically, this is described by the trigonometric sine function, with time
as its argument.  Every T seconds (we call T the “period” of the wave), the
argument increases by 2π or “full circle” (360°) and the voltage pattern repeats:
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The sine function derives its name from the sinuous “look” of the curve, which
describes the x-coordinate of a point on the rim of a wheel as it turns through
360° or 2π radians.

You might ask “Why are the waves sinusoidal, instead of saw-toothed or
triangular?”  The answer is, approximately, that the waves are generated by
electrons oscillating at the ends of “springs” that represent the change of energy
as the electron’s orbit moves nearer to and farther from the nucleus.  The actual
process quickly gets into quantum complexities that we don’t have time to deal
with here!  Similarly, our eyes respond only to the sinusoidal components,
because the sensing structures are resonantly tuned.  This all turns out to be
handy, because the techniques of mathematical physics have largely been
developed around sinusoidal signals since the days of Fourier, the extraordinary
French mathematician and physicist.

As we move the observation point further from the source, the receipt of the
wave is delayed a little by the extra propagation time, which causes an apparent
shift in the sinusoidal wave by some angle, which we call the phase of the wave,
and about which we will say much more later on.  The strength of the wave also
drops off a little, as the 1/r-law dictates.

The rate of repetition is the only thing that separates light waves from radio,
television, microwave, and gamma waves!  The mathematical physics of all
these varieties of electromagnetic waves are the same, but their practical and
physiological properties are quite different.  We think of the various waves as
being arrayed in terms of their “frequencies,” measured in cycles per second
(called Hertz, Hz).  Their “period” is what we have already seen as T, measured
in seconds (or microseconds, or attoseconds).  Their frequency is given by ν (the

Greek letter “new”, in cycles per second), where ν = 1/ T .  Electrical engineers
like to speak in terms of the “radian frequency,” ω π ν π= =2 2 / T  (“omega,” in

radians/second), but we will speak strictly of the “natural frequency,” ν, in these

discussions.

The electromagnetic spectrum is described in most physics books, and we will
outline it only briefly here.  Suffice to say that the principles of holography
apply to all frequencies of waves, not just visible light.

Of the entire electromagnetic spectrum, only a tiny sliver, less than a two-to-one
range of frequencies (compared to the nine octaves of the audio spectrum),
serves to evoke a response in the human eye that we call “seeing.”  Within this
visible part of the spectrum, different regions evoke quite different sensations,
which we distinguish by the term “colors.”  For unknown reasons, optickers like
to describe the visible spectrum in terms of the wavelengths in a vacuum of the
radiations that are involved.  These wavelengths vary between 400 and 700
nanometers (nm, 10-9m), and it is the extreme shortness of these wavelengths
that accounts for many of the practical problems of making holograms.  Listing
the radiations of a few common lasers by frequency and wavelength gives us a
chance to compare them.

The sensation of color produced by light of various wavelengths (when viewed
as an isolated spot in a dark surround) varies in a fairly reliable way as the
wavelength varies from long to short.  The color names of “red, orange, yellow,
green, blue, and violet” and so forth are associated with various regions of the
spectrum for that reason.  We will simplify matters by referring only to the
“red”, “green,” and “blue” areas, which will serve as additive color primaries.

Light as     Sinusoidal   Waves:
Now, mingling the wave    shapes    from our discussion of pulsed waves, and the
sinusoidal   repetitiveness    of ordinary light, we can come up with a combined
description of light in a form that can readily be manipulated in mathematical
terms.  Again we refer to illustrative sketches as capturing a “snapshot” of the
wave, but this time the concentric circles represent the successively-emitted
peaks of the repetitive sinusoidal waves (not a succession of snapshots, as
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before).  The separation of the circles is the distance that the wave travels in T
seconds, one cycle of the vibration, and is called the “wavelength,” designated
by λ (the Greek letter “lambda”), so that λ ν= ⋅ =c cT / ,  Then we can write,

for a    spherical   wave:
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When we go on to consider plane waves, the situation is not much different: just
plug in the new form of the pulsing function into the same old wave shape
formula, and the new function results:
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Coherence in waves
Our simple model of laser light assumes that it emerges from an ideal point
source (the focus of a microscope lens, for example, as shown in the sketch).
Within the diverging beam are the concentric spherical wavefronts, invisible to
the eye.  We also assume that this light has a perfectly well-defined and
unvaryingly constant frequency.  But both of these assumptions simplify the
behavior of real lasers in ways that we should at least acknowledge—before
continuing to ignore them for the most part!  The term used to describe these
properties of light is their coherence, and it has two “dimensions,” the spatial
coherence, which describes the departure from ideal point-source-like
behavior, and the temporal coherence, which describes the departure from ideal
single-stable-frequency behavior.  Both of these follow from the physics of
resonant laser cavities and light amplifying media, which allow several
oscillating modes along the direction of the resonator and from side to side.

spatial coherence - point sources?
Laser cavities can, if nothing is done about it, resonate in a wide variety of
modes, each with a slightly different frequency and spatial distribution 4.
Perhaps you know that mechanical structures also vibrate in different spatial
modes (e.g., the sound of a drumhead depends on where you strike it)—these
are easily seen with holographic interferometry!  We usually distinguish
between the various lateral or side-to-side modes, and the various longitudinal
or along-the-cavity modes.  The lowest-order or preferred longitudinal mode is
the so-called TEM00 mode (“t-e-m-zero-zero”), which produces a nice bell-
shaped output beam, called a Gaussian beam after the German mathematician
who first used the exponential function involved (rhymes with “house-ian”).

Other low-order lateral modes produce donut-shaped beams, two-lobed beams,
and four-leaf-clover-shaped beams.  If they are present, then the spot focused by
a microscope objective will be larger than expected from a single zero-order
mode.  However, almost all lasers used today are “single mode” type, producing
only the Gaussian beam profile.  But if the laser system becomes overheated, or
mechanically distorts for any reason, it can easily produce other low-order
modes that will degrade its operation for holographic purposes.  The main
problem caused by the other modes is that their frequencies are significantly
different than the lowest-order mode, which decreases the coherence length of
the laser light, discussed below.
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temporal coherence -        monochromaticity?
Usually, “monochromatic” means that a beam of light produces a single color
(“red” for a helium-neon laser), as seen by the human eye.  When talking about
lasers, though, monochromatic usually means single frequency.  Even when a
laser is operating “multi-mode,” all of the output beams are the same color!
You may know that resonators such as organ pipes and violin strings can be
overblown or excited so as to produce overtones or higher harmonics, usually
integer multiples of the lowest allowed or fundamental frequency (for which the
string is a half wavelength long, for example).  Typical laser resonators are a
million half-wavelengths long, and are operating at extremely high harmonics of
the basic frequency, given by fcavity = c/2L (in the range of a hundred
megahertz).  The laser’s amplification medium is capable of providing gain over
a fairly wide range of frequencies, depending on exactly what the material and
conditions are.  Thus the resonator can be simultaneously operating at several
nearby harmonics of the basic cavity frequency.  The combination of these
modes appears like a single output signal that is fluctuating in amplitude and
frequency very rapidly, returning to the same frequency every round-trip cavity
time (one over the fundamental cavity frequency).

Because the output frequency is fluctuating so widely, only light that emerges
from the laser at nearly the same instant can interfere with itself—light that
comes out at a little later time will produce an unsteady interference pattern that
will average to zero contrast over a very short exposure time.  The acceptable
delay between light samples is usually expressed as the coherence length of the
laser, the distance that light travels before the frequency changes so drastically
as to destroy the interference pattern.  For typical helium-neon lasers, the
coherence length is somewhere between 100 and 150 mm (four to six inches).
A holographic image of a scene will gradually lose brightness for components
deeper than 50 to 75 mm from the object point whose path length has been
carefully matched to that of the overlapping reference beam.

The coherence length can be dramatically increased by the use of an etalon in
the laser cavity.  This is typically a piece of very carefully polished glass with
partially-reflecting coatings on each surface.  Because it is only 10 mm or so
thick, its cavity frequency is quite high, and its harmonics are deliberately
separated by more than the width of the laser medium’s gain bandwidth.  If an
etalon harmonic can be aligned with the central resonance of the cavity, only
one output frequency will be allowed, and it can have roughly 50% of the power
previously put out in the collection of frequencies.  This produces true single-
frequency operation, and the coherence length can become many hundreds of
meters.  However, the system is still vulnerable to mechanical vibrations, which
alter the separation of the main cavity mirrors, and thermal drift (which does the
same thing).  Thus, although manufacturers cite some amazing coherence
lengths, they have to be measured over the time of a holographic exposure to be
useful predictors, and can be much shorter in practice.  These days, almost all
medium- and large-frame lasers for holography include etalons (single-
frequency operation makes life sooo much easier!), but we will still have to
worry about it with helium-neon lasers.

laser speckle
Another quality of laser light that you have no doubt noticed by now is the gritty
or sandy appearance of the surfaces that it illuminates.  We call this grit “laser
speckle.”  It is an interference phenomenon that arises from the microscopic
randomness of surfaces that look to our eyes like flat and smooth surfaces, and
as such we can’t say much about it before we start looking at interference in
more detail.  Even then, the statistical techniques required go beyond the scope
of this introductory course 5.  But we can at least start cataloging some
interesting properties of laser speckle, so that we can know what to look for:

1. Laser speckle is always in focus; that is, its contrast is high no
matter where our eyes are focused.
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2. Laser speckle follows our motion.  Or rather, it seems to stand still
at whatever plane our eyes are focused at.  Speckle can be a useful
way of checking the accuracy of your eyeglass prescription!

3. The size of the speckles increases if the diameter of the pupil
decreases—such as by looking through a pinhole.

We will have plenty of experience with laser speckle before the semester is over.
Interestingly, it will gradually disappear for most of us!

E&M nature of the waves
Now we have to deal with some of the realities of the electromagnetic nature of
these waves.  Firstly, the electric field is a vector quantity, so we should
designate it as a bold-face variable, E(x,y,z,t), and the vector’s direction is
always perpendicular (or “transverse”) to the direction of propagation (except in
some crystals).  The magnetic vector is also transverse, and also perpendicular to
the electric vector.  Often, the electric vector vibrates up and down, or at some
angle, so that its end point traces out a straight line.  Such light is called
“linearly polarized.”  In other cases, the tip of the electric vector may sweep out
a circle or ellipse, and the light is called “circularly polarized” or “elliptically
polarized.”  Light from incandescent bodies, such as the sun or electric lamps,
varies its polarization state every few femtoseconds, and is called “unpolarized.”
But laser light is usually very well polarized, and is usually linearly polarized.
The direction depends on the orientation of the Brewster windows for a gas
laser, and is customarily vertical.  Maxwell’s equations require light to be a
transverse vibration, which means that no point source can radiate equally in all
directions; there have to be some directions of no radiation (for the same reason
that you can’t comb a hairy basketball flat—there must always be some
cowlicks).

Polarization will come to be fairly important—two reasons come to mind:
1) The strength of the reflection of light from a glass surface depends on the
polarization of the light (unless the light is coming in perpendicular to the
surface), and
2) Only the parallel polarization components of two waves can combine to
produce interference patterns (which we discuss in Ch. 3).  Perpendicularly
polarized beams (or rather, orthogonally polarized beams, in the general
elliptical polarization case) cannot interfere at all.

Intensity (irradiance)
When it comes time for a light beam to do some work, such as expose a piece of
photo film, we have to consider where the necessary energy comes from.  In
virtually all cases, it is the electric field that does the work; the magnetic field is
just “along for the ride.”  Electrical gadgeteers know that the power absorbed by
a resistive load is proportional to the average of the square of the electrical
voltage across the load, divided by the resistance of the load.  Similarly for
optical power, which we usually measure in watts per square centimeter and call
the “irradiance” or the “intensity” of the light (the latter being an obsolete term
in the metric system, but still very commonly used)—it is proportional to the
time average of the square of the electric field amplitude.  Radiometry and
photometry are baffling topics, as are most forms of accounting; they account
for “what happened to the photons, or the lumens, that came out of the laser?”
Suffice to say that if a uniform light beam has an electric field of the form

E x y t A t( , , ) sin= ( )2πν volts/meter  ,  (12)

then its average squared value will be

E x y t
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in the MKS system of metric units.  Full sunlight provides about one kilowatt
per square meter, from which you can estimate its peak electric field!

Non-linear detection
All detectors (photocells, photo film, photodiodes, etc.) produce a current
(electrons per second) that is proportional to the power in a light beam (which is
proportional to the number of photons per second).  The sensitivity may vary
over the electromagnetic spectrum, but the linear electrical output is always
proportional to the square of the optical input (the light amplitude).  Most optical
engineers have thought of irradiance as the linear input variable, but for
coherent-light optickers, the amplitude of the wave is the important linear
variable!  It is the “square-law detection” (that is, non-linear detection) of this
signal that causes many of the effects that seem so strange about coherent
optics!

Intensity, Power, and Energy
Holographers often meter their beams, and it is important to understand what the
various units of measurement are, and what they mean.  Also, it is prudent to
start thinking about the safe use of lasers, and this also requires understanding
the various measures of laser light, and how they might effect a recording film
or your eyes.  There is nothing dangerous about the way we will be using lasers
in this course’s holography laboratory, but they are certainly capable of being
misused with unhappy results.

There are different terms to describe whether we are measuring a light beam
over a small area within the beam, and are interested in its energy density, or
over the beam’s entire area, and are interested in its total “flow.”  Similarly, we
have to distinguish between a measurement of a rate of flow at a particular
instant, or the cumulative flow over the entire length of a pulse or of an exposure
time.  The chart to the side notes the various terms.  We will walk through them
one by one.

The power of continuous-wave lasers, such as the He-Ne lasers in the lab, is
typically rated in milliwatts (perhaps between 1 and 10).  However, if the beam
is spread out with a lens, the “heat” felt by our hands will be proportional to the
“intensity” or “irradiance,” the power per unit area.  And if this is totaled up
over time, we will determine the total amount of “cooking” each small area of
our hands have suffered, their “exposure” in milliwatt-seconds per unit area,
also called milliJoules per square centimeter (photo film sensitivity is typically
measured in ergs/cm2, a cgs unit; an erg is 1/10,000th of a milliwatt-second).
We add that our lasers are too weak to feel with your hand (go ahead, try it!),
and that a typical flashlight emits about 60 mW of light (which is, of course,
more spread out that a laser beam).

If you are dealing with a pulsed laser, such as a ruby laser, you will instead be
told its total energy output per pulse, in Joules (watt-seconds).  A one Joule laser
is pretty big, and puts out as much light in a few tens of nanoseconds as a
10 mW He-Ne does in a minute and a half.  If you divide the Joules by the
number of square centimeters of the spread-out beam (and multiply by
10,000,000 to go from Joules to ergs), you will get the exposure of a piece of
film put there.  The danger of pulsed lasers comes from the very high
instantaneous power of the beam at its peak, which may cause explosive damage
to surfaces.  A one-Joule laser with a 30 nanosecond-wide pulse reaches a peak
power of 33    billion    milliwatts.  You would feel, hear, and remember that one!
We won’t use pulsed lasers in this course.

We will come back to these ideas when we make measurements for holographic
exposures, which will involve overlapping beams, but  the concepts will be the
same.  This discussion has been in terms of the “thermal” or radiometric power
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of a laser beam; a whole other set of units and measurements is used to describe
its “brightness” or photometric power (lumens replace photons, for example).
Photometry will get short shrift here, but we will have to consider it briefly later
on in the course.

Conclusion:
We have skimmed through a lot of optics to find the mathematical descriptions
of spherical and plane sinusoidal waves, which will serve us in good stead in the
chapters just to come.  You should make sure that you follow the logic that leads
to the terms in the parentheses so far, as they will soon mutate into still further
and more complex forms!  Once those are under control, we may not often
worry about the formalities of describing waves in detail, unless we are
interested in the details of holographic optical element design.  Likewise, there
are lots of details about measuring the intensities of optical beams that we
should know about, but only a few calculations that we will make over and over
again.  Nevertheless, as holography takes on new and different forms, there are
likely to be times when we have to worry about measuring beams based on
fundamental principles.  For example, we have ignored the effect of exposure
angle on the necessary dose for a holographic material—this is acceptably
accurate for typical angles, but requires re-examination when we start talking
about edge-lit holograms that involve very large beam angles.
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