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PHYC 3540 
Summary 

 
II..  PPrrooppaaggaattiioonn  ooff  lliigghhtt  

a. History, wave vs. particle picture 
b. Fermats Principle – actual path is that for which the OPL is an extremum 
c. Huygen’s principle – every point on wavefront acts as a source 

i. Large aperture (>>λ) – rectilinear propagation  (Geometric optics) 
ii. Small aperture ( λ≥ ) – spreading of wavefront (Diffraction) 

d. Wavefronts, Rays – Laws of reflection and refraction (Snels law) 
IIII..  GGeeoommeettrriicc  OOppttiiccss  

a. Imaging – Cartesian surfaces, Paraxial ray approximation 
b. Refraction at a Spherical interface      
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c. Thin lens         
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d. Principal Planes (H,H’) 
i. Used to represent any optical element or system and are located 

such that the system images an object according to:   
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ii. The principal planes used to represent a spherical interface (or thin 
lens) must coincide at the interface (or centre of the thin lens). 

 
e. Combination of two 

systems

 
 

i. Power of combined system 
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ii. The location of H, H’ are determined with respect to H1 and H2’ as 

follows:
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f. Matrix methods in paraxial optics 
i. Matrices 
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Refraction matrix 
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Reflection matrix 
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Thin lens matrix  
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ii. Cardinal point locations 
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g. Stops in optical systems 

i. Aperture stop 
• Element that limits the bundle of rays (and hence light 

gathering power or speed) collected by optical system 
• Is that element whose entrance pupil subtends the smallest 

angle at the object point in question 
• Exit pupil is the image of the aperture stop in all elements 

following it 
• Entrance pupil is the image of the aperture stop in all 

elements preceding it 
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ii. Field stop 
• Element of the optical system that limits the field of view  
• That element whose entrance window subtends the smallest 

angle at the centre of the entrance pupil 
• Exit window is the image of the field stop in all elements 

following it. 
• Entrance window is the image of the field stop in all 

elements preceding it 
iii. Chief ray, marginal rays – definition of edge of field of view 
iv. Angular field of view 

• Image space – angle formed by the entrance window as 
viewed from the centre of the entrance pupil 

• Object space – angle formed by the exit window as viewed 
from the centre of the exit pupil 

h. Applications 
i. Cameras (aperture settings (f#), exposure, telephoto lens) 

ii. Human eye – myopia, hyperopia 
iii. Hand magnifiers, eyepieces, compound microscope 
iv. Telescope, binoculars 

III. PPhhyyssiiccaall  ooppttiiccss (wave properties are important) 
a. Wave equation – plane waves, spherical waves, cylindrical waves 
b. Amplitude reflection and transmission co-efficients    

  
21

2
12

21

12
12

2
;

vv
v

vv
vv

+
=

+
−

= τρ  

c. Electromagnetic waves (E ⊥ B; E, B in phase, speed c/n) 
i. Irradiance        
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ii. Transmittance        
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iii. Reflectance (1→2)       
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d. Interference 
i. Two source interference 

• Irradiance
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• If ε1 = ε2 and I1=I2=Io there are maxima located at,  

  
a

m λ
θ ±=sin  

• Examples 
 Double slit, Lloyds mirror, radio towers 
 Dielectric layers, e.g. Haidinger bands, fringes of 

equal thickness observed in oil films, air wedges 
 Antireflection coatings 
 Newton’s rings 

ii. Multiple beam interference (coated dielectric layers) 
• Transmitted irradiance     
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δ ndko=  and n, θ’  pertain to the 

dielectric layer. 
 Irradiance maxima occur when 

omnd λθ ±='cos2  
• Fabry-Perot Interferometer 
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e. Diffraction 
i. Fresnel–Kirchoff diffraction formula (Mathematical statement of 

Huygen’s principle)       
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ii. Fraunhofer limit (plane waves)     

 diffraction integral reduces to ∫=
aperture

ikr dAeCE '  

• Single slit (width b)      
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• Circular aperture (diameter do = 2ao)    
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 Airy disc; Spatial resolution of optical devices; 
focussing limit  

• N slits (width b, separation a)     
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• Diffraction gratings      
 Grating dispersion     
 Spectral resolution mN=ℜ  

f. Polarization 
i. Jones vector for polarization      
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ii. Jones matrices for optical elements 
• Linear polarizer (Transmission axis at an angle θ wrt x-

axis)        
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• Phase retarders      
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the advance in phase of the components 
 Quarter wave plate (|εy - εx| = π/2)   
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 Half wave plate (|εy - εx| = π)    
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• Rotator (light polarized at an angle θ is rotated by an angle 
β)        
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g. Holography 
i. Hologram        

        
 where, R – reference wave, O – object wave, I - intensity 

 
ii. Reconstructed wave 
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 where, t – transmission, first term – direct wave, second 
term – conjugate wave, third term – object wave 
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