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1 Introduction Many representation schemes have been developed

The ability of spatial light modulatoréSLMs) to represent ~ Since the first computer generated hologfammd each
complex-valued images enables intensive information pro- Method is subject to various approximation errors that re-
cessing functions using the Fourier transform properties of duce the total information content below that of the ideal
light. Many comparisons between the speed of optical and desired signal. In some representation schemes, the space-
electronic processors begin by evaluating the number of Pandwidth productSBWP, which is equal to the number of
Fourier transforms operations per second that each systenSLM pixelsN) is reduced. In other schemes, the fidelity of
can perform. In these comparisons, it is common to con- the resulting diffraction pattertas measured by the noise
sider the number of SLM pixelsl used in performing the ~ @nd errors in the Fourier plane diffraction patters de-
optical Fourier transform to be identical to the number of 9graded. Additionally, each representation scheme has a
discrete sample points in the fast Fourier transf¢RRT). computational cost, which in some cases can exceed the
This assumption ignores the fact that most practical SLMs, computational effort of the FFT. Significantly greater com-
while they may produce a range of complex values, do not putational costs can be incurred if one is attempting to pro-
produce arbitrary values of complex modulatitag., as duce an intensity pattern in the Fourier plane for which the
shown in Fig. 1. The lack of a full range of modulation phase of the design is used as a free parameter to optimize
values(e.qg., as exhibited by phase-only, quantized phase-the optical performance. This problem is routinely solved
only, coupled amplitude-phase, less thanghase modula- by numerically intensive optimization or search algorithms
tion) can be a much more significant limitation than the for the design of fixed pattern, diffractive optical array gen-
finite precision arithmetic of digital processors. Thus, be- erators. However, the solution is numerically intensive and
fore beginning a comparison between digital and optical not suited to real-time systems applications for which
Fourier transform systems, one is faced with the problem of SLMs are intended.

how to represent a desired complex value with the limited  This initial discussion has introduced many of the fun-
modulation range of the available SLM. damental issues that one encounters in using SLMs in Fou-

2452 Opt. Eng. 40(11) 2452-2463 (November 2001) 0091-3286/2001/$15.00 © 2001 Society of Photo-Optical Instrumentation Engineers



Cohn: Fundamental properties of spatial . . .

m

1
< Re ; Re
(a) (b)
Im Im
[ o
®
[ J [ J
@ Re @ Re
[ J ®
®
o ©

()

Fig. 1 Various possible modulation ranges for SLMs: (a) phase-only
and amplitude-only (thick line); (b) coupled amplitude phase, which
have continuous phase ranges of 27 (solid line) and 4= (dashed
line); (c) quantized; (d) biamplitude phase specifically showing am-
plitudes of unity and zero.!

rier transform applications. These issues could be over-
looked by scientists new to the field of information optics,
who are familiar with computer optimized designs of Fou-
rier transform holograms, but who have not given much
attention to applying diffractive design to systems that are
required to adapt to unanticipated situations in real-time.

For such systems, an adaptive, on-line design system is

necessary and it must be structured so that it can produc
an adequate design in the available response time.

This paper reviews essential properties of arrays of dis-
cretely sampled modulator pixelg.e., pixelated SLMs)
with particular consideration of their abilities and also limi-
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Fig. 2 Available spatial bandwidth of SLMs and usable spatial
bandwidth (shaded regions) of various encoding algorithms with the
plots in the Fourier transform or reconstruction plane of the SLM: (a)
available spatial bandwidth B of an nXn pixel array of pitch A in
both x and y and (b) usable bandwidth B/9 for Burckhardt's method
under the constraint that the usable area is of square aspect.

and more effective ways to use the inherent capabilities of
SLMs.

2 SLM SBWP Versus Encoding SBWP

The term SBWP is used widely to describe the information
capacity of a pixelated SLM in terms of its number of pix-
els. The number of pixels in the modulator corresponds to
the number of unique, diffraction-limited resolution cells in
the diffraction plane. Typically one might assume that the
SLM is annxXn=N array of pixels that are equally spaced
by the identical incremenA in both x andy. The recon-
struction from this discretely sampled SLM produces peri-
odic replicas. Each replica extends over a square area of
bandwidth
=B,B,=1/A?, (1)
whereB,=B,=1/A [see Fig. 23)]. | often refer toB as the
nonredundant bandwidtiNRB) of the modulator. The
SBWP of the signal on the modulator can be distinguished

tations in terms of representing complex numbers. Various ffom the SBWP of the modulation signal. Specificay,
encoding schemes are considered and compared in terms ofh€ signal NRB, can be less th#&h Figure 2Zb) shows a

the properties of encoding range, encoding SBWP, diffrac-
tion efficiency, quality of the reconstruction, and cost of

signal spectrum in a subregion of the NRB thabisinits
long by b units wide having a bandwidth &;=b?. This

computation. These encoding methods and representativesituation arises in group-oriented encodi@g example of
results are reviewed through Sec. 5. Section 6 considers thevhich is presented belovbecause the grouger superpix-

additional factor of limited spatial resolution of SLMs and
its potential to influence the performance of the encoding
methods. A frequency-dependent diffraction efficiency
(which is quite similar to modulation transfer functjois
defined and calculated for large fill-factor pixelated SLMs,
for spatially continuous SLMs of limited spatial resolution,

els) have a larger spacing than individual pixels, and hence,
a smaller NRB. Due to the already limited resolution of
SLMs and their high cost per pixéhs compared to fixed
pattern computer generated holograms and diffractive op-
tics), this loss in the effective number of pixels or SBWP
could dramatically reduce the effective digital computation

and for limited-resolution continuous SLMs addressed by rate of optical Fourier transformers. In many group-
pixelated signals. Section 6 is also a review in that the oriented encoding algorithms, the superpixels are other than
effects of limited resolution are generally well understood square. In such cases, the signal bandwidth might be non-
and easily calculated. However, Sec. 6 does present originalsquare. For instance, if the pixel grouping is in theirec-
calculations and comparisons between limited-resolution tion, then the signal NRB would b@;=B,b. However, it
SLMs that | have been unable to locate in the archival may be less than desirable to work with nonsquare SLMs
literature. It is hoped that this review paper on the funda- (as well as imagers and frame grabbefBherefore, the
mental properties of SLMs will stimulate and suggest to nonsquare format may practically limit the useable band-
designers of optical computing systems improved, novel width to B,=b?.
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As an example of these concepts, consider Burckhardt's
method in which three adjacent pixels are used to repre-
sent one complex value. The complex amplitude of any
given superpixel is effectively achieved by using the clear
area of each pixel to represent amplitude, and the position

of the clear area to represent phase. Fine control over phase (a) - Re

and amplitude requires resolution much finer than the cell \ N

size, thus this method has a useable bandwidth that is much \ )/

less than that set by the resolution of the modulator. If the N s

amplitude of the modulator can be continuously varied, [ ~~<__.-

then a complex-valued modulation can be constructed with

three pixels. Thus the usable bandwidth wouldBy#3 in

one direction, which give8/9 total usable bandwidth for

an SLM that is a square array of pixels and under our Encodable

assumption that the usable signal bandwidth is sqisee range

Fig. 2(b)].

However, it can be argued that the usable bandwidth is (b) Fully

even less. The transmittance is written as complex
range

a(x)=br(x)+cr(x+A)+dr(x+2A), (2 4_5::?&?:&!,
range

Wherer(x) is a ﬂ.JnCtion(_SUCh asa rgy&lthat describes the Fig. 3 For Burckhardt's encoding method, (a) its spatial frequency
pixel apertureA is the pitch of the pixels; ant, c, andd dependence! and (b) its encoding range and fully complex encoding

are real positive amplitude transmittances of the pixels. The rangea“ tl)n (ﬁ) the fr?quencgl-dﬁﬁnd)ent ﬁorgplex gmplitutlﬂe is rlepr?-
Fourier transform of thi roixel i sented by the circular arc (solid line). The desired complex value is

ourier transto 0 S SUPErPIXelis the intersection of the two dotted lines. The length of the arc corre-
sponds to the values that would be found across the range of spatial

A(f,)=R(f)|b+cexpj2nf,A)+dexpj4nf,A)], (3) frequencies b in the usable band [the shaded regions in Fig. 2(b)].

where uppercase symbols indicate Fourier transformed
variables. The Fourier transform of the pixel aperture func-
tion R(f,) is slowly varying with spatial frequencf;, and

it is ignored for this discussiofit is considered further in
Sec. 6) For A=1/(3f;), Eq.(3) can be approximated as

3 Modulation Range, Encoding Range and Fully
Complex Encoding Range

Modulation range is the range of values that a modulator
pixel can produce. Figure 1 shows ranges for various
modulators. The modulator in the example in Sec. 2 is real
valued between 0 and[Fig. 1(a)]. For purposes of encod-
ing by Burckhardt’s algorithm, we treat the 3 pixel super-
pixel as if it produces a linear combination of the three
phasor values on the right side of E¢).

A(fg)=b+cexp(j2n/3)+dexpj4m/3). 4

Thus at the frequencyfo=1/(3A)=B,/3 any complex
value can be produced by selecting the three weighting co- Encoding range is the range of values that can be ap-
efficientsb, ¢, andd. The complex value in Eq4) is used proximated by a particular encoding algorithm. The encod-
as the design value for purposes of encoding. However, theing range for Burckhardt's method is shown in Fighg
complex value is actually frequency dependent and its The inscribed circular region represents the fully complex
value can change dramatically across the NBB3. The encoding range. By fully complex range, we mean that the
magnitude of the problem can be shown by a simple ex- encoding method can represent any complex value out to a
ample. Ifb=c=1/2 andd=0, then Eq/3) for all frequen- given radius. This maximum radius is usually limited by
cies[with R(f,)=1] is the passive nature of the SLM. However, some encoding
algorithms(e.g., the minimum distance encodifiyIDE)

. method introduced in Sec] 4re not restricted in radius and
A(Tx)=cog mty/3fo)explj mix/3fo). (5 can encode any value in the complex plane.
Figure 3a) is a graphical construction of the results of Eqs. 4 Full SBWP, Pixel-Oriented Encoding
(4) and (5). The designed value atfy is A(fp) Algorithms

=0.5£60 deg. This is illustrated in Fig(8 as the result- ~ ope of the most interesting properties of SLMs is that
ant of adding the two phasors together. Also illustrated is complex-valued encoding is possible without grouping of
the solid circular arc that describes the locus of the complex any kind. Thus a spectrum can be produced for which the
values over a nonredundant bandByf3. This shows that  NRB of the SLM and the encoding are identical. There are
the complex values vary from 0.88@0 to 0290 deg  neither replications nor selected areas where there are size-
over the nonredundant band frofg/2 to 3fy/2. Thus the able noise patterns. This is possible by devising encodings
approximation in this encoding technique is poor at the that map each desired complex value to available values in
edges of the band. Depending on the accuracy required, itthe modulation range of the corresponding SLM pixels.
may be necessary to reduce the usable bandwidth further. Possibly the first single pixel encoding method was the ki-
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Im the desired phase. By focusing on other than phase-only
: SLMs, Farn and Goodman provided new insights into the
importance of the modulator characteristic on filter design.

¢ Desired complex value

® Encoded value 4.2 Encoding on the Basis of Minimizing the Mean
Squared Error in the Modulation Plane

Juday generalized the Farn and Goodman method and for
the first time explicitly stated the concept of mapping from

................... E............... annnsssnanas Re the desired Complex value to those values achle%&wm
: P kN the available SLM. The method begins by identifying a
\ fully complex function that optimizes a specified cost func-
1 tion. Then the values are mapped to the closest value in the
/ modulation range of the SLM, as illustrated in Fig. 4. The
-7 performance of the encoded function usually depends on a

single complex value free parameter that scales the desired
function. This method was originally applied to single ob-
ject recognition filters, for which the method has been

Fig. 4 Maximum correlation peak intensity (upper half of the com- shown to produce optimal performance in terms of several
E"@; p';”‘“e) and MDE methods (lower half of the complex plane) metrics. It has since been applied to composite recognition
Ref. 1).

filters and composite function Fourier transform holograms
(e.g., spot array generators:or the composite filters, the
individual functions can be added together with arbitrary
noform, in which the magnitudes of the desired complex scale factors that provide additional degrees of freedom that
values are mapped on radial lines to the closest availablecan be used to minimize the mean squared mapping errors
phase-only modulation However, the original discussions o to optimize pertinent performance metrf¢s2For com-

of the kinoform method were not described in terms of posite functions, however, the mapping procedure is not
encoding. The performance of the kinoform was improved ysually optimal. This observation can be restated by saying
on by iterative approaches that varied the phase degree othat minimizing the mean squared error between the desired
freedoms to improve the diffraction efficiency and accuracy frequency plane function and the SLM values does not nec-
of the diffraction pattern§.With this and continuing im-  essarily produce the best performance in the correlator out-
provements in optimization the concepts of encoding meth- put plane. The observation applies in a similar manner to
ods lay dormant for several years. The kinoform reappeareddiffractive spot array generators; that is, minimizing the
as the phase-only matched filters for optical correlators. mean-squared error between the desired composite function
Encoding reemerged in the work of Farn and Goodman and the function produced by the modulator does not nec-

and in the work of Jud&y'® on matched filters. Here the  essarily produce the best performance in the Fourier dif-
concept of encoding was considered from the perspectivefraction plane.

of SLMs of unusual and varied modulation characteristics.
The modulators included those for which the amplitude can
be written as a function of the phase, and which are referred4.3  Statistically Based Encoding that on Average

to as amplitude-phase coupled SLMs. Produces the Desired Spectrum
The average value of a random variable can be tised
4.1 Encoding on the Basis of Maximum Phase represent the desired complex value at each pixel of the
Matched Energy SLM. This follows from the fact the far-field diffraction

The objective of the Farn and Goodman design is to maxi- Pattern is a superposition of Huygens wavefronts radiating
mize the intensity of the correlation peak when the training from the SLM pixels. Therefore the wavefronts form a sta-
image is placed in the input of a correlator. The intensity of tistical ensemble. The law of large numbers |r_1d|cz_ites that
the correlation peak can be maximized by maximizing the the average pattern becomes a better approximation to the
magnitude of each frequency component. Thus at each fre-desired pattern as the number of pixels is incredSdthis
quency the phase of the filter spectrum should be conjugateMethod is subject to noise effects due to the randomness of
to the phase of the target spectrum and the filter magnitudeth® modulation values, but the background ndishich is
should be as large as possible. If the SLM could produce White overB) may be preferred to the background noise for
any value, then the filter magnitudes would be infinite. Minimum distance methodéwhich tends to be spiky
Thus the desired complex value for the corresponding SLM Comparisons of these methods in terms of the features of
pixel is an infinite magnitude value with a phase that is the diffraction patterns are presented in Sec. 5. Here, | re-
conjugate to the phase of the target spectrum. For theVieW the general approach to designing pseudorandom en-
modulation characteristic in Fig. 4, choosing the phase of €0ding (PRE algorithms and to evaluating the encoding
SLM to match the desired pha&ie arrows in Fig. #does range of PRE for a given SLM. _ .

not produce the largest magnitude in the direction of the ~ The design statement for PRE is to approximate
desired phase. Instead, as shown by the construction in Fig.=(ac,V¢) the desired complex value of modulation with

4, other points on the modulator characteristic can producea=(a,¥) the modulation produced by the corresponding
even larger amplitude components along the direction of SLM pixel. The ordered pairs are the polar representations
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~€——— Available modulation value 2

Fig. 5 Geometry of pseudorandom biamplitude encoding. Any de-
sired value a, between the two available modulation values a; and
a, can be encoded by pseudorandom encoding.*

of the complex quantities. The most general statement of
the pseudorandom encoding design principal is to{agt
=a., where

(@ | ap(arca ®

is the ensemble average of the complex valued random
variable a, and p(a) is the probability density function
(pdf) of the random variable. The integral equation is
solved by determining a pdf that satisfies HE). The
(magnitude squargdapproximation error between the de-
sired complex value and the effective average modulation
has been shown to be

e=(la*)—la®. @)

This error in encoding represents the amount of energy that

is diffracted into the white background speckle noise. The
sum of the error components from each pixel determines
the average intensity of the noise background.

For a continuous modulation range, Ef) is underde-
termined and there are an infinite number of pdf’s that sat-
isfy the integral equation. For a binary SLM, however,
there is either a single unique solution or no solution at all.
This elementary analysis provides a direct method for de-
veloping PRE algorithms and for evaluating their encoding
range. Binary encoding is directly developed by substitut-
ing the pdf for the binary distribution
p(a)=pd(a—a;)+qdé(a—ay), tS)
into Eq. (6), whered(-) is the Dirac delta functiorg; and
a, are a pair of complex values from the modulation char-
acteristic ang andq=1—p are the probabilities of select-
ing a; anda,. Sincep is a probability, its value is between
one and zerd.t is clear from usage when we are referring
to the binary probabilityp and the density functiop(a). ]
Evaluating Eq(6) with this pdf gives an expression for the
effective complex amplitude of

9

Equation(9) is recognized as the expression for a line as a
function of the variablep. For p=1, a; is encoded, fop

=0, a, is encoded and for values @f between one and
zero any value lying on the line segment betwaganda,

can be encoded. This geometric interpretaiisee Fig. 5

(ay=pay+(1—p)ay.

2456 Optical Engineering, Vol. 40 No. 11, November 2001

can be brought out further by considering that the desired
complex valuea, can be expressed in terms of the two
complex valuesy anda, as
ac=(la;+118)/1, (10
wherel, is the distance betwees. anda;,l, is the dis-
tance betweerg, and a,, and I[=I;+1,. Clearly, the
lengths can be chosen so that the desired valuean be
realized by the average@r effective value (a). As Fig. 5
shows, only the range of values betwesgnanda, can be
realized. Values on the same line that are outside the line
segment cannot be realized by PRE because this would
require that the probabilitp either is greater than 1 or less
than 0, which is not possible for a probability. Equati¢@s
and(10) suggest the following encoding formula for binary
SLMs: For a given value op, the desired complex value
a.=(a) is represented.e., encodedby a single randomly
selected value
a=a Iif O=s<p

(11)
a=a, If p<s=l,
wheres is a uniformly distributed random number between
0 and 1. This encoding formula would be repeated for each
pixel, each time with a new, independently selected random
number.

The preceding analysis and geometric interpretation of
binary PRE provides insight into PRE for various continu-
ous and quantized modulation characteristics. The analysis
can be used to determine the PRE encoding range for vari-
ous modulation characteristics. The range is found by com-
bining the ranges encoded by each possible pair of values
from the SLM characteristit® Because the binary encod-
ing algorithm has the fewest constraints, the maximum pos-
sible range of value& convex setis found by this proce-
dure. Figure €) shows the convex regiofshaded that is
bounded by the three possible binary encodirgs-ay,
a,—ag andaz—a; . This is the range of possible complex
values that can be realized with three quantized values of
modulation. Also the circular shaded region represents the
range over which fully complex valued functions can be
encoded. A minimum of three noncollinear modulation val-
ues are required to obtain fully complex encoding by PRE.
Note that ternary encoding is similar to Burckhardt's
method(Fig. 3 in that the average value encoded by ter-
nary PRE is the vector sum
a.=(a)+pay+ga+rag, (12
where the probabilities of selectirzg, a, andas have total
probability
p+q+r=1. (13
In Burckhardt's method in Fig. 3, the three vectors are
present simultaneously, while in ternary PRE in Figa)6
the three vectors are only present in an average or virtual
sense. Furthermore, the constraint of Ef3) leads to a
different encoding range in Fig(® than for Burckhardt's
method in Fig. &).
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a, g Encodable range (a) (b)

Fully complex range

(a) a,p
s, r Extremal encoding range
Modified a,
I
1
1
(b)

Conventional

Fig. 6 Ternary pseudorandom encoding showing (a) PRE encoding
and fully complex range,* and (b) distinction between MD-PRE (con-
ventional) and mMD-PRE (modified) for a ternary SLM (Ref. 17).

5 Blended Encoding Algorithms

The various approaches to encoding can be combined, hy-
bridized or blended to achieve finer control and improved
performance of encoding algorithms. Similar to Juday’s
MDE method, these new algorithms can also be fine tuned
for improved performance by adjusting a few parameters. |
review the blended minimum distance pseudorandom
encoding’~'° (MD-PRE) and the modifietf MD-PRE
(mMD-PRB), which are both single pixel encoding algo-
rithms. | also present recent results on blending error diffu-
sion (ED) with PRE (ED-PRB (Ref. 20, which is not a
full SBWP single pixel encoding algorithm. Blending PRE
with MDE or ED provides a way to overcome the limited
encoding range of PRE and still achieve the properties of
nonspiky, white background noise. In fact, the blending of
algorithms usually produces significant improvements in
the fidelity of the spectrum/diffraction pattern over either
encoding algorithm individually. After an introduction to
the algorithms, | will present simulations that demonstrate
the improvements due to blending. References 17 and 21
present experimental demonstrations of some of these en-
codings as well.

Figure @b) illustrates the difference between MD-PRE
and mMD-PRE. It is specifically shown for a ternary SLM. Fig. 7 Encoding methods (a) MDE, (b) PRE, (c) MD-PRE, and (d)
The desired values inside the triangular region are encodedMP-PRE and respective simulated far-field intensity patterns for

- . (e) MDE with y=c, (f) PRE with y=0.5, (g) MD-PRE with y

by ternary PRE. The first approach for_ encoding the values ~0.80, and (h) mMMD-PRE with y=0.95. To bring out the back-
outside the region was to map the desired value to the clos-ground noise the maximum grayscale value (full white) is 30% of the
est available modulation value. This corresponds to con- average intensity of the 49 spots. Approximately 40X 107 resolution
ventional MDE. There is a second possibility that could be cells of the full 128x 128 NRB are shown."’
considered a minimum distance mapping. This would be to
map the desired value to the closest value that can be en-
coded by PRE and then pseudorandom encode that valuedividing the complex region into three decision regions.
This corresponds to the modified minimum distance map- Magnitude scaling of the complex values provides no effect
ping in Fig. &b). Figure 7 provides additional information on this mapping. Rotating the data by a phase angle can
on the various encoding methods for the ternary SLM. Fig- change the performance; however, it has little effect on the
ure 7a) shows that for MDE the mapping corresponds to test functions that are used in the simulations presented
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here, since they are nearly uniformly distributed in angle. = mMD-PRE quad-phase mMD-PRE tri-phase
Figure db) shows the PRE encoding range and the in- -——— MD-PRE quad-phase - - - MD-PRE tri-phase
scribed circle(radius y=0.5) represents the fully complex
encoding range. The desired complex values can be scaled
to fit inside a smaller circle, but this increases the encoding
error and the noise in the diffraction pattern. Figuie)7
represents the MD-PRE algorithm. It is a combination of
Figs. 7@ and 7b) with MDE used only when PRE is not
possible. In Fig. ) MDE is replaced with mMDE. The
figure also indicates MDE regions. For the desired values in
these regions mMDE is identical to MDE.

Figures Te) to 7(h) are the simulated diffraction patterns
(for a desired 128 128 pixel modulation functionthat re-
sult from using the corresponding encoding methods in
Figs. 7a) to 7(d). The intensity pattern desired is ax7
array of equal intensity spots on a negligible background of
noise. For MDEFig. 7(e)] the pattern includes a very pro-
nounced pattern of spikes. These are harmonics of the de-
sired pattern and are due to the systematic mapping of the
method, which is similar to hard limiting in communication
systems(which produces intermodulation products at sum
and difference frequencieg?RE[Fig. 7(f)] produces a no-
ticeable, but on average uniform, noise background. MD-
PRE[Fig. 7(g)] has features of both MDE and PRE. There
is both a white noise background and noise spikes, though
both are weaker than either MDE or PRE individually. With
mMD-PRE[Fig. 7(h)] the noise pattern is nearly identical
in intensity and the noise spikes are at the level of the noise
and nearly invisible to the eye. Each image shown has been
optimized to produce the best combination of uniform in-
tensity spot arraygminimum nonuniformity (NU)] as a
function of the amplitude scale facter For these “fidel-
ity” metrics mMD-PRE usually produces the best perfor-
mance. Figure 8 demonstrates the improvement and showgig. 8 Performance of blended algorithms as a function of the
how these metrics depend on the scale paramgtdihe scaling/blending parameter vy for ternary phase and quad phase
. - hase-only SLMs (Ref. 17).
improvements are easier to see for the four-phase than for
the ternary SLM because it covers more of the complex
plane, which reduces the encoding error. For the minimum
value of y shown in the plot, each curve corresponds to kernel(say a 2<2 kerne) to produces and then added to
PRE and fory=«MD-PRE is equivalent to MDE. Both  the desired valu@. to produce the next value &f that is
the MD-PRE and mMD-PRE have a maximum value of again encoded by MDE. The adjacent image is the simu-
SPR(signal to peak noise ratio—average intensity of the 49 lated diffraction pattern for ED. The filtering of the mis-
spots to maximum noise spikand a minimum value of  match causes the noise pattern to be spatially separated
NU (nonuniformity—relative standard deviation of the 49 from the desired pattern and the nearest neighbor encoded
spotg at a specific value of. Achieving the best perfor-  values to be correlated. As with the group oriented methods
mance with intermediate values of demonstrates im- ED does not maximize fidelity over the NRB of the SLM.
proved performance of mMD-PRE and MD-PRE over Perhaps ED can be tuned or blended to produce higher
MDE and PRE individually. In one respect, MDE is opti- fidelity patterns. ED, because of its similarity to MDE,
mal. This is that it produces the highest possible diffraction works even if the desired values are scaled so tha
efficiency?2 However, this is at a sacrifice in fidelity. Direct ~greater than unity. An example of encoding wheexceeds
design proceduré$ that require various global optimiza- unity is shown in Fig. &) together with the resulting pat-
tion algorithms can predistdft complex valued functions  tern wheny is increased from fin Fig. 9&)] to 1.5. This
in ways that compensate for the nonuniformity in MDE, but increases SPR from less than 4 originally to 12 across the
this is numerically intensivé® entire NRB. Figure &) illustrates an MD-PRE algorithm.

ED has proven to be an effective way to improve the Inside the unit circle a biamplitude PRE method is used and
appearance of halftone prirfIt has also been applied in  MDE (i.e., the kinoform is used for desired values outside
slightly modified form to continuous and quantized phase- the unit circle. The resulting diffraction pattern has an SPR
only modulator$® Figure 9a) illustrates the encoding of 47 and an NU of 5.8% foy=1.4. However, the blended
method for a continuous phase-only SLM. The vatuat ED-PRE method in Fig. @), has an SPR of 53 and an NU
specific pixel is encoded by MDE to produce the SLM of 3.3% that is even better than MD-PRE and ED alone.
modulationa and the mismatch errog. This value plus The blending procedure is more complicated than previous
values from other nearby pixels is filtered by a convolution methods in that there are now two scale parameters to be

SPR

NU (%)

n (%)
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6 Diffraction Efficiency Versus Usable SBWP

To this point the SLM has been modeled as an array of
equally spaced point sources of pit&hn bothx andy. For
this model, it is possible to devise encoding algorithms that
produce desired diffraction patterns anywhere within the
NRB. However, pixels of finite aperturéwhich were
briefly discussed in Sec.)2introduce a frequency-
dependent rollofR(f,, f,) that multiplies the spectrum of
the array of point sources. A consequence of the rolloff is
that the intensity of the spectrum may be too low in por-
tions of the NRB to be practically useful and thus the useful
SBWHP is reduced to a value less than the NRB. Making the
pixel apertures as small as possible minimizes rolloff but
essentially all the light is blocked by the dead space be-
tween pixels. Maximizing the pixel apertures so that there
is no dead spacg.e., 100% fill factoy is 100% efficient on
the optical axis {,=f,=0) but the frequency-dependent
rolloff is maximized for frequencies off the optical axis.
This section further illustrates these considerations by de-
termining the useful SBWP from maps of frequency-
dependent diffraction efficiency for pixelated and spatially
continuous, # phase-only SLMs. The effects of different
fill factors and pixel aperture shapes for the pixelated SLM
are compared with each other and also with spatially con-
tinuous SLMs that are subject to limited phase resolution.
Frequency-dependent diffraction efficiency is most di-
rectly appreciated by evaluating the percentage of the inci-
dent energy that can be diffracted into a single spot from
the SLMs approximate implementation of a linear phase
ramp. More involved analyses are possible for determining
the maximum efficiency possible faspecific diffraction
pattern designs, e.g., various arrays of sp6t& The sim-
pler single-spot analysis nonetheless provides considerable
insight into the efficiency-limited SBWP of various SLMs.

6.1 Pixelated SLMs

The linear phase ramp for a pixelated SLM is approximated
by first modding the linear phase ramp into therange of

the SLM (similar to a blazed gratingand then quantizing

the phase values to produce a set of stair steps. If the period

Fig. 9 Encoding method and corresponding simulated far-field in- of the ramp 1f, is an integer of the pixel pitcA, (or more
tensity patterns for (a) ED, y=1; (b) ED, y=1.5; (c) MD-PRE, y generallym/f,=n,A,, wheren, andm are integers then
=1.4; and (d) ED-PRE, y=13, x=0.6. Images are saturated so the diffraction efficiency can be directly calculated as
that the maximum grayscale value (full white) is 3% of the average 2 . . .

intensity of the 49 spots.? n(f,) =|a.(f,)|*, wherea,(f,) is the Fourier coefficient of

the fundamental frequendy, (i.e., the position the spot is
steered from the optical ajisExtending this approach to
2-D functions g(x, y) that represent the SLM transmit-
tance, the diffraction efficiency can be explicitly written as
varied to optimize performance. These ar@s beforgand
X, Which scales the PRE encoding error. The reason for the
scaling is that PRE automatically diffuses encoding error 7(f,, fy)=
into the noise background, thus it should not also be dif-
fused forward by ED. Values ob outside the unit are
mapped as in Fig.(®). The result shown in Fig.(8) cor- xexd —j2m(fx+fyy)]dxdy
responds to using/=1.3 andx=0.6. Careful comparison
of the pattern in Fig. @) to the one if Fig. @) shows that
the background noise pattern is weakest in the center of thewhere (,, f,) is the fundamental frequency. The integral is
image and that the ED-PRE noise pattern appears to be also recognized as the Fourier transform of one period of
diffused version of the more spiky noise pattern in Fig. the function, which can often be used to simplify the evalu-
9(a). ation of Eq.(14).

1f, (1,
0 I e

2
: (14)
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For an SLM having rectangular pixels of aperture widths
in x andy of w=w,=w,, and pitch ofA=A,=A, (in
keeping with discussions on square NRB in Sek. Ey.
(14) for diffraction efficiency evaluates to
nsd fx, fy)=(W/A) [ sinqwf,)sinqwf,)]?, (15)
where sinck) = sin(mx)/(7x). The termpg,=w/A is often
referred to as the duty cycle ad,= (w/A)? is often re-
ferred to as the areal fill factor. For a unity duty cycle each
sin@ function gives efficiency that is identical to that for
1-D quantized® and stepped phase gratinjszor the case
of a two phase level grating.e.,n,=2 or f,=1/(2A)], the
efficiency is (24r)?>=0.405, which is the identical result for
a 50% duty cycle square wave. For a 2-D 100% fill factor
binary grating the s+ 1/2A,=1/2A) = (2/m)*=0.164.

For the examples developed in this section, | consider the
efficiency at these corner Nyquist frequencies to be too
small to be practically useful. For this particular SLM | will
assume that 40.5% is the minimum required efficiency.
Plotting isocontours of Eq(l5) for a 100% fill factor in
Fig. 10@) shows that the 40.5% level is nearly circular with
a radius of 0.5X. [The nearly circular contours are some-
what surprising given the rectangular separability of Eg.
(15); however, plotting the contours out to higher frequen-
cies does reveal the rectangular structurehe useful
SBWP is then/(2A)? or 0.78 whereB=1/A? is the
NRB. The useful SBWP is still 3 to 7 times greater than for
2-pixef! and 3-pixet group-oriented encoding algorithms
(see Sec. 2 The fact that 21% of the NRB is considered to
be nonuseful in this design example does motivate further
research into single pixel encoding algorithms that distrib-
ute as much of the encoding error into the small nonusable
areas as possible. ED and ED-MDE are a step in this direc-
tion because they do place a good deal of the light in the
nonusable areas; however, much of the error, even for ED,
does also appear in the usable area.

Currently the highest fill factor for pixelated SLMs is
~84% for a device in developmetft.The on-axis effi-
ciency from Eq.(15) would be 70%. As mentioned, the
rolloff is slower than for the 100% fill factor SLM, as il-
lustrated in Fig. 1(b). The slower rolloff is reflected in that
the efficiency at a radial frequency 6f=1/(2A) is ~0.34
or only 84% of the efficiency of that for the 100% fill factor
SLM. If one chooses to continue using the 40.5% minimum
efficiency requirement then this SLM has a useful SBWP of
nearly 0.6B.

It is interesting to compare the 84% fill factor, square-
pixel SLM with a circular pixel SLM. For circular pixels of
diameterd, Eq. (14) then evaluates to
7ei( fr)=[m(d/2A)jinc(df,) ], (16)
where jinc§) =2J,(7x)/(7x), and wherel,(x) is the first
order Bessel function of the first kind. Fdr=A, the fill
factor Agg= w(d/2A)?=0.78 and the on-axis efficiency is
62%. Comparing the circular-pixel with the square-pixel
SLM in Fig. 10b) shows that on-axis the efficiencies are
most different and that the curves are nearly identical over
much of the plot away from(0, 0). If the designer can
accept the lower diffraction efficiency on-axis, then the cir-
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Fig. 10 Contours of equal diffraction efficiency for phase-only
SLMs: (a) SLM with square pixels of width w=A (thick curves),
spatially continuous SLM with circularly blurred phase of blur diam-
eter d=A (thin curves), and two specific curves for spatially continu-
ous SLMs with phase blurred by squares of two different widths, and
(b) SLM with square pixels of w=0.915A (solid curves) and SLM
with circular pixel of diameter d=A (dotted lines). The spatial fre-
quency coordinates and ranges in (a) are identical to those shown
for (b) and correspond to one-quarter of the NRB.

cular pixels provide the advantage of greater uniformity of
diffraction efficiency across the usable SBWP. A second
advantage for the SLM designer is that the increased dead
space provides additional area for opaque electrodes and
addressing circuitry.

6.2 Spatially Continuous SLMs

When might it be preferred to use a spatially continuous
SLM over a pixelated SLM? Equatiofi4) can be used to
help answer this question in terms of useful SBWP. Light
valves are typical examples of continuous SLMs. Within
the limits of scalar diffraction theory, an ideal light valve
could diffract a spot to any angle with 100% efficiency.
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However, phase-only light valves have limited phase reso-

lution, which leads to frequency dependent diffraction effi-

6.3 Continuous SLMs Addressed by Pixelated
Signals

ciency. A useful model for this effect is to convolve the Spatially continuous SLMs and light valves are often ad-

desired phase modulation with a phase point spread

functior?® of the SLM. The desired modulation is ar2
modded linear phase ranfas was used in the model of the
pixelated SLM that is then convolved with a point spread

function to produce the blurred phase. The blurred phase is

then evaluated using E¢l4).

First consider the convolution of a one-dimensional
phase ramp of period i/ and a blurring function
w ™ rect(x/w). The resulting blurred phase is composed of
two linear phase ramps, one with the origifsdy positive
slope 27/f, over a duty cycle of +wf, of the period and
a second with d&negative slope over the remainder of the
period. Evaluation in Eq(14) gives

nbl(fx):(l_fo)z- (17

The efficiency is identical to the square of the duty cycle of

the 1-D blaze which suggests that the negative sloped seg-_

ment does not contribute to the fundamental diffraction or-
der. This conclusion provides insight into the evaluation
with 2-D blur functions. | will specifically consider square
and circular blurs.

Linear phase ramps vary in only one directigh,The
2-D blur functions, when convolved with a phase ramp,
replace the desired phase values with the average phas
The average phase is identical to the value of desired pha
ramp over a duty cycle of 2w(6)f,, wherew(#0) is the
width of the blur function projected into the directienFor
a circular blurw(6)=d results in a diffraction efficiency
that is a circularly symmetric function of radial frequency.
For a square blur function of width, the efficiency can be
written

7od s fy):[l_w(fx+fy)]2- (18

Example diffraction efficiency contours of both types of
blurring are presented in Fig. (@. The circular curves
(thin lines are for a circular blur function of diameter
=A. Note the 40.5% efficiency curve has a radius of
0.36/A so with this degree of blurring the usable SBWP is
0.4B. A single curve ¢p=0.25) for the square blur function
of width w=A is also plotted. Note that the curve comes
close to intersecting the circularly blurred 40% efficiency
curve atd= /4. The lower efficiency for the rectangularly
blurred curve is reasonable when one recognizes that th
rectangular blur function is longer by 1.414 in the 45 deg
direction. A rectangular blur function wittv=0.51A pro-

dressed by spatially discrete signals. Video monitors are
composed of scan lines and frequently the video source is a
frame grabber. The evaluation of the mapping from a pix-
elated signal to a spatially continuous, phase-blurred SLM
can significantly complicate the modeling and analysis.
Fortunately, there is at least one special case that can be
used to gain insight into the combined effect of blurring
and pixelation. The special case follows from evaluating
the convolution of a blur functiom\ ~rect(x/A) with a
stepped phase function of 100% duty cycle steps and period
1/f,=n,A. The resulting phase is identical to the phase of
a blurred linear ramp with blur widthv=A. Thus with
pixelation along the< andy directions, efficiencyat least

in x andy) can be calculated using E(@L7) with w=A.
Therefore the Fig. 1@) curve for the continuous SLM pro-
vides the following information on the effect of blurring
with a pixelated input.

Based on the preceding discussion, the efficiencyafor

A for the rectangular blurring andl= A for circular blur-

ring is identical inx andy directions. The 40.5% efficiency
curve for circular blur in Fig. 1@) intersects the axes at
0.36/A. This is equivalent to saying that this degree of blur-
ring requires that there are at least 2.7 phase steps per pe-
riod, compared with 2 samples per period for the 100% fill
factor pixelated SLM, to meet the minimum diffraction ef-

Seﬁciency. In the limit of zero blur radius, the discretely ad-
%ressed SLM would behave identically to the pixelated

SLM.

Qualitative experience from experimental studies of
phase blurring in Refs. 14, 33, and 34 leads me to believe
that the effects of blurring on discretely addressed SLMs
are quite a bit more severe than this idealized estimate. For
real-world SLMs, | suspect that the diffraction efficiency is
more severely affected both by both blurrifdye to a non-
abrupt, e.g., Gaussian-shaped, Bluand pixelationdue to
less than 100% fill factors and blurring in the write-side
monitor). Despite the idealized nature of the models pre-
sented in this section, these simple results do provide useful
information on the selection of SLM characteristics to
achieve good utilization of optical power and SBWP.

7 Summary

A major goal in this review has been to identify methods
that can conveniently encode the desired complex-valued
modulation to the SLM. In this way it would be possible to
make the most flexible use of the SLM. Certainly, many

Cuseful optoelectronic systems can be developed using pre-

computed, globally optimal encodings. However, precom-
puted solutions are not always possible or practical, espe-

duces a 40.5% efficiency curve that is almost tangent to thecjqly if the processor is required to adapt to a changing

40.5% efficiency curve for the 100% fill factor, pixelated

environment in which there is limited prior knowledge.

SLM. The useful SBWP for this degree of rectangular blur- s to achieve this degree of flexibility the encoding pro-
ring apears to be nearly the same as that for the 100% fill cess must not be a computational bottieneck. Also SLMs
factor SLM. Also note that a circular blur function with have a small number of rather costly pixels. To maximize
=0.73A has nearly an identical 40.5% curve and useful use of the limited SBWP, methods other than the early
SBWP as the 100% fill factor SLM. The reason for select- methods of encoding from the fields of holography and
ing the particular values ofv=d=A for plotting are dis- computer generated holography are required for today’s
cussed in the next subsection. SLMs. The full NRB can be used by employing methods
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that represent one complex value with a single SLM pixel. 10.

In using full NRB design approaches, the rolloff due to 44
pixel fill factor and other sources of resolution loss should
be considered, especially when high levels of diffraction
efficiency are required over most of the NRB.

While excellent performance can be obtained by using

modulation design methods that optimize performance of 13-

the SLM modulation as a function of all the pixels, these

methods are time consuming and usually cannot be usedi4.

on-line in an optical processor. A useful alternative is pixel-
oriented encoding, which can be calculated in real time
with simple operations by a serial processor. It is also pos-

sible to bring the performance of these encoding methods %
closer to that of the optimization methods by including a 17.

step in which some of the free parameters are adjusted to
improve performance within the available computational ;g
budget of the supporting electronics. One hierarchical ap-
proach for such a design system is proposed in Ref. 21.
Fundamental properties of SLMs include their inherent
SBWHP, their frequency-dependent efficiency and their abil-
ity to represent complex-valued modulations with some de-

gree of accuracy through encoding. These properties areyg.

important to consider in the design and development of
numerous optical computing architectures that use SLMs in
Fourier transform arrangemerifsFuture developments in

the understanding of SLM properties and encoding could
further improve the optical performance and reduce the

computational complexity needed to demonstrate real-time 23.

Fourier transform processors that are based on limited
modulation range SLMs.

25.
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