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Abstract. The performance of optical computers that include program-
mable Fourier optics depends intimately both on the physical character-
istics of the particular spatial light modulator (SLM) and on the particular
algorithms that map the ideal signal into the available modulation range
of the SLM. Since practical affordable SLMs represent only a limited
range of values in the complex plane (e.g., phase-only or quantized
phase), numerous approaches have been reported to represent, ap-
proximate, encode or map complex values onto the available SLM
states. The best approach depends on the space-bandwidth product
(SBWP) of the signal, number of SLM pixels, computation time of encod-
ing, the required response time of the application, and the resulting per-
formance of the optical computer. My review of various methods, as
applied to most current SLMs, which have a relatively low number of high
cost pixels, leads me to recommend encoding algorithms that address
the entire usable frequency plane and that emphasize the fidelity of the
approximated Fourier transform over maximization of diffraction effi-
ciency and minimization of approximation error. Frequency-dependent
diffraction efficiency (due to pixel fill factor of discrete SLMs or resolution
of spatially continuous SLMs) is also evaluated as a factor that can limit
usable SBWP and possibly modify the choice of encoding method.
© 2001 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1409336]
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1 Introduction

The ability of spatial light modulators~SLMs! to represent
complex-valued images enables intensive information p
cessing functions using the Fourier transform properties
light. Many comparisons between the speed of optical
electronic processors begin by evaluating the numbe
Fourier transforms operations per second that each sy
can perform. In these comparisons, it is common to c
sider the number of SLM pixelsN used in performing the
optical Fourier transform to be identical to the number
discrete sample points in the fast Fourier transform~FFT!.
This assumption ignores the fact that most practical SLM
while they may produce a range of complex values, do
produce arbitrary values of complex modulation~e.g., as
shown in Fig. 1!. The lack of a full range of modulation
values~e.g., as exhibited by phase-only, quantized pha
only, coupled amplitude-phase, less than 2p phase modula-
tion! can be a much more significant limitation than t
finite precision arithmetic of digital processors. Thus, b
fore beginning a comparison between digital and opti
Fourier transform systems, one is faced with the problem
how to represent a desired complex value with the limi
modulation range of the available SLM.
2452 Opt. Eng. 40(11) 2452–2463 (November 2001) 0091-3286/2001/
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Many representation schemes have been develo
since the first computer generated hologram,2 and each
method is subject to various approximation errors that
duce the total information content below that of the ide
desired signal. In some representation schemes, the sp
bandwidth product~SBWP, which is equal to the number o
SLM pixelsN! is reduced. In other schemes, the fidelity
the resulting diffraction pattern~as measured by the nois
and errors in the Fourier plane diffraction pattern! is de-
graded. Additionally, each representation scheme ha
computational cost, which in some cases can exceed
computational effort of the FFT. Significantly greater com
putational costs can be incurred if one is attempting to p
duce an intensity pattern in the Fourier plane for which
phase of the design is used as a free parameter to opti
the optical performance. This problem is routinely solv
by numerically intensive optimization or search algorithm
for the design of fixed pattern, diffractive optical array ge
erators. However, the solution is numerically intensive a
not suited to real-time systems applications for whi
SLMs are intended.

This initial discussion has introduced many of the fu
damental issues that one encounters in using SLMs in F
$15.00 © 2001 Society of Photo-Optical Instrumentation Engineers
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Cohn: Fundamental properties of spatial . . .
rier transform applications. These issues could be o
looked by scientists new to the field of information optic
who are familiar with computer optimized designs of Fo
rier transform holograms, but who have not given mu
attention to applying diffractive design to systems that
required to adapt to unanticipated situations in real-tim
For such systems, an adaptive, on-line design system
necessary and it must be structured so that it can prod
an adequate design in the available response time.

This paper reviews essential properties of arrays of
cretely sampled modulator pixels~i.e., pixelated SLMs!
with particular consideration of their abilities and also lim
tations in terms of representing complex numbers. Vari
encoding schemes are considered and compared in term
the properties of encoding range, encoding SBWP, diffr
tion efficiency, quality of the reconstruction, and cost
computation. These encoding methods and represent
results are reviewed through Sec. 5. Section 6 considers
additional factor of limited spatial resolution of SLMs an
its potential to influence the performance of the encod
methods. A frequency-dependent diffraction efficien
~which is quite similar to modulation transfer function! is
defined and calculated for large fill-factor pixelated SLM
for spatially continuous SLMs of limited spatial resolutio
and for limited-resolution continuous SLMs addressed
pixelated signals. Section 6 is also a review in that
effects of limited resolution are generally well understo
and easily calculated. However, Sec. 6 does present orig
calculations and comparisons between limited-resolu
SLMs that I have been unable to locate in the archi
literature. It is hoped that this review paper on the fund
mental properties of SLMs will stimulate and suggest
designers of optical computing systems improved, no

Fig. 1 Various possible modulation ranges for SLMs: (a) phase-only
and amplitude-only (thick line); (b) coupled amplitude phase, which
have continuous phase ranges of 2p (solid line) and 4p (dashed
line); (c) quantized; (d) biamplitude phase specifically showing am-
plitudes of unity and zero.1
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and more effective ways to use the inherent capabilities
SLMs.

2 SLM SBWP Versus Encoding SBWP

The term SBWP is used widely to describe the informat
capacity of a pixelated SLM in terms of its number of pi
els. The number of pixels in the modulator corresponds
the number of unique, diffraction-limited resolution cells
the diffraction plane. Typically one might assume that t
SLM is ann3n5N array of pixels that are equally space
by the identical incrementD in both x and y. The recon-
struction from this discretely sampled SLM produces pe
odic replicas. Each replica extends over a square are
bandwidth

B5BxBy51/D2, ~1!

whereBx5By51/D @see Fig. 2~a!#. I often refer toB as the
nonredundant bandwidth~NRB! of the modulator. The
SBWP of the signal on the modulator can be distinguish
from the SBWP of the modulation signal. SpecificallyBs ,
the signal NRB, can be less thanB. Figure 2~b! shows a
signal spectrum in a subregion of the NRB that isb units
long by b units wide having a bandwidth ofBs5b2. This
situation arises in group-oriented encoding~an example of
which is presented below! because the groups~or superpix-
els! have a larger spacing than individual pixels, and hen
a smaller NRB. Due to the already limited resolution
SLMs and their high cost per pixel~as compared to fixed
pattern computer generated holograms and diffractive
tics!, this loss in the effective number of pixels or SBW
could dramatically reduce the effective digital computati
rate of optical Fourier transformers. In many grou
oriented encoding algorithms, the superpixels are other t
square. In such cases, the signal bandwidth might be n
square. For instance, if the pixel grouping is in thex direc-
tion, then the signal NRB would beBs5Bxb. However, it
may be less than desirable to work with nonsquare SL
~as well as imagers and frame grabbers.! Therefore, the
nonsquare format may practically limit the useable ba
width to Bs5b2.

Fig. 2 Available spatial bandwidth of SLMs and usable spatial
bandwidth (shaded regions) of various encoding algorithms with the
plots in the Fourier transform or reconstruction plane of the SLM: (a)
available spatial bandwidth B of an n3n pixel array of pitch D in
both x and y and (b) usable bandwidth B/9 for Burckhardt’s method
under the constraint that the usable area is of square aspect.1
2453Optical Engineering, Vol. 40 No. 11, November 2001
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Cohn: Fundamental properties of spatial . . .
As an example of these concepts, consider Burckhar
method3 in which three adjacent pixels are used to rep
sent one complex value. The complex amplitude of a
given superpixel is effectively achieved by using the cle
area of each pixel to represent amplitude, and the posi
of the clear area to represent phase. Fine control over p
and amplitude requires resolution much finer than the
size, thus this method has a useable bandwidth that is m
less than that set by the resolution of the modulator. If
amplitude of the modulator can be continuously varie
then a complex-valued modulation can be constructed w
three pixels. Thus the usable bandwidth would beBx/3 in
one direction, which givesB/9 total usable bandwidth fo
an SLM that is a square array of pixels and under
assumption that the usable signal bandwidth is square@see
Fig. 2~b!#.

However, it can be argued that the usable bandwidt
even less. The transmittance is written as

a~x!5br~x!1cr~x1D!1dr~x12D!, ~2!

wherer (x) is a function~such as a rect! that describes the
pixel aperture;D is the pitch of the pixels; andb, c, andd
are real positive amplitude transmittances of the pixels. T
Fourier transform of this superpixel is

A~ f x!5R~ f x!bb1c exp~ j 2p f xD!1d exp~ j 4p f xD!c, ~3!

where uppercase symbols indicate Fourier transform
variables. The Fourier transform of the pixel aperture fu
tion R( f x) is slowly varying with spatial frequencyf x and
it is ignored for this discussion~it is considered further in
Sec. 6.! For D51/(3f 0), Eq. ~3! can be approximated as

A~ f 0!.b1c exp~ j 2p/3!1d exp~ j 4p/3!. ~4!

Thus at the frequencyf 051/(3D)5Bx/3 any complex
value can be produced by selecting the three weighting
efficientsb, c, andd. The complex value in Eq.~4! is used
as the design value for purposes of encoding. However,
complex value is actually frequency dependent and
value can change dramatically across the NRBBx/3. The
magnitude of the problem can be shown by a simple
ample. Ifb5c51/2 andd50, then Eq.~3! for all frequen-
cies @with R( f x)51# is

A~ f x!.cos~p f x/3f 0!exp~ j p f x/3f 0!. ~5!

Figure 3~a! is a graphical construction of the results of Eq
~4! and ~5!. The designed value atf 0 is A( f 0)
50.5/60 deg. This is illustrated in Fig. 3~a! as the result-
ant of adding the two phasors together. Also illustrated
the solid circular arc that describes the locus of the comp
values over a nonredundant band ofBx/3. This shows that
the complex values vary from 0.866/30 to 0/90 deg
over the nonredundant band fromf 0/2 to 3f 0/2. Thus the
approximation in this encoding technique is poor at
edges of the band. Depending on the accuracy require
may be necessary to reduce the usable bandwidth furth
2454 Optical Engineering, Vol. 40 No. 11, November 2001
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3 Modulation Range, Encoding Range and Fully
Complex Encoding Range

Modulation range is the range of values that a modula
pixel can produce. Figure 1 shows ranges for vario
modulators. The modulator in the example in Sec. 2 is r
valued between 0 and 1@Fig. 1~a!#. For purposes of encod
ing by Burckhardt’s algorithm, we treat the 3 pixel supe
pixel as if it produces a linear combination of the thr
phasor values on the right side of Eq.~4!.

Encoding range is the range of values that can be
proximated by a particular encoding algorithm. The enco
ing range for Burckhardt’s method is shown in Fig. 3~b!.
The inscribed circular region represents the fully comp
encoding range. By fully complex range, we mean that
encoding method can represent any complex value out
given radius. This maximum radius is usually limited b
the passive nature of the SLM. However, some encod
algorithms @e.g., the minimum distance encoding~MDE!
method introduced in Sec. 4# are not restricted in radius an
can encode any value in the complex plane.

4 Full SBWP, Pixel-Oriented Encoding
Algorithms

One of the most interesting properties of SLMs is th
complex-valued encoding is possible without grouping
any kind. Thus a spectrum can be produced for which
NRB of the SLM and the encoding are identical. There a
neither replications nor selected areas where there are
able noise patterns. This is possible by devising encodi
that map each desired complex value to available value
the modulation range of the corresponding SLM pixe
Possibly the first single pixel encoding method was the

Fig. 3 For Burckhardt’s encoding method, (a) its spatial frequency
dependence1 and (b) its encoding range and fully complex encoding
range.4 In (a) the frequency-dependent complex amplitude is repre-
sented by the circular arc (solid line). The desired complex value is
the intersection of the two dotted lines. The length of the arc corre-
sponds to the values that would be found across the range of spatial
frequencies b in the usable band [the shaded regions in Fig. 2(b)].
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Cohn: Fundamental properties of spatial . . .
noform, in which the magnitudes of the desired comp
values are mapped on radial lines to the closest avail
phase-only modulation.5 However, the original discussion
of the kinoform method were not described in terms
encoding. The performance of the kinoform was improv
on by iterative approaches that varied the phase degre
freedoms to improve the diffraction efficiency and accura
of the diffraction patterns.6 With this and continuing im-
provements in optimization the concepts of encoding me
ods lay dormant for several years. The kinoform reappea
as the phase-only matched filters for optical correlato7

Encoding reemerged in the work of Farn and Goodm8

and in the work of Juday9,10 on matched filters. Here th
concept of encoding was considered from the perspec
of SLMs of unusual and varied modulation characteristi
The modulators included those for which the amplitude c
be written as a function of the phase, and which are refe
to as amplitude-phase coupled SLMs.

4.1 Encoding on the Basis of Maximum Phase
Matched Energy

The objective of the Farn and Goodman design is to ma
mize the intensity of the correlation peak when the train
image is placed in the input of a correlator. The intensity
the correlation peak can be maximized by maximizing
magnitude of each frequency component. Thus at each
quency the phase of the filter spectrum should be conju
to the phase of the target spectrum and the filter magnit
should be as large as possible. If the SLM could prod
any value, then the filter magnitudes would be infini
Thus the desired complex value for the corresponding S
pixel is an infinite magnitude value with a phase that
conjugate to the phase of the target spectrum. For
modulation characteristic in Fig. 4, choosing the phase
SLM to match the desired phase~the arrows in Fig. 4! does
not produce the largest magnitude in the direction of
desired phase. Instead, as shown by the construction in
4, other points on the modulator characteristic can prod
even larger amplitude components along the direction

Fig. 4 Maximum correlation peak intensity (upper half of the com-
plex plane) and MDE methods (lower half of the complex plane)
(Ref. 1).
f

-
e

.

the desired phase. By focusing on other than phase-o
SLMs, Farn and Goodman provided new insights into
importance of the modulator characteristic on filter desi

4.2 Encoding on the Basis of Minimizing the Mean
Squared Error in the Modulation Plane

Juday generalized the Farn and Goodman method and
the first time explicitly stated the concept of mapping fro
the desired complex value to those values achievable10 with
the available SLM. The method begins by identifying
fully complex function that optimizes a specified cost fun
tion. Then the values are mapped to the closest value in
modulation range of the SLM, as illustrated in Fig. 4. T
performance of the encoded function usually depends o
single complex value free parameter that scales the des
function. This method was originally applied to single o
ject recognition filters, for which the method has be
shown to produce optimal performance in terms of seve
metrics. It has since been applied to composite recogni
filters and composite function Fourier transform hologra
~e.g., spot array generators.! For the composite filters, the
individual functions can be added together with arbitra
scale factors that provide additional degrees of freedom
can be used to minimize the mean squared mapping er
or to optimize pertinent performance metrics.11,12 For com-
posite functions, however, the mapping procedure is
usually optimal. This observation can be restated by say
that minimizing the mean squared error between the des
frequency plane function and the SLM values does not n
essarily produce the best performance in the correlator
put plane. The observation applies in a similar manner
diffractive spot array generators; that is, minimizing t
mean-squared error between the desired composite func
and the function produced by the modulator does not n
essarily produce the best performance in the Fourier
fraction plane.

4.3 Statistically Based Encoding that on Average
Produces the Desired Spectrum

The average value of a random variable can be used13 to
represent the desired complex value at each pixel of
SLM. This follows from the fact the far-field diffraction
pattern is a superposition of Huygens wavefronts radiat
from the SLM pixels. Therefore the wavefronts form a s
tistical ensemble. The law of large numbers indicates t
the average pattern becomes a better approximation to
desired pattern as the number of pixels is increased.14 This
method is subject to noise effects due to the randomnes
the modulation values, but the background noise~which is
white overB! may be preferred to the background noise
minimum distance methods~which tends to be spiky!.
Comparisons of these methods in terms of the feature
the diffraction patterns are presented in Sec. 5. Here, I
view the general approach to designing pseudorandom
coding ~PRE! algorithms and to evaluating the encodin
range of PRE for a given SLM.

The design statement for PRE is to approximateac

5(ac ,Cc) the desired complex value of modulation wi
a5(a,C) the modulation produced by the correspondi
SLM pixel. The ordered pairs are the polar representati
2455Optical Engineering, Vol. 40 No. 11, November 2001
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Cohn: Fundamental properties of spatial . . .
of the complex quantities. The most general statemen
the pseudorandom encoding design principal is to set^a&
5ac , where

^a&5E ap~a!da ~6!

is the ensemble average of the complex valued rand
variable a, and p(a) is the probability density function
~pdf! of the random variable. The integral equation
solved by determining a pdf that satisfies Eq.~6!. The
~magnitude squared! approximation error between the d
sired complex value and the effective average modula
has been shown to be15

«5^uau2&2uacu2. ~7!

This error in encoding represents the amount of energy
is diffracted into the white background speckle noise. T
sum of the error components from each pixel determi
the average intensity of the noise background.

For a continuous modulation range, Eq.~6! is underde-
termined and there are an infinite number of pdf’s that s
isfy the integral equation. For a binary SLM, howeve
there is either a single unique solution or no solution at
This elementary analysis provides a direct method for
veloping PRE algorithms and for evaluating their encod
range. Binary encoding is directly developed by substit
ing the pdf for the binary distribution

p~a!5pd~a2a1!1qd~a2a2!, ~8!

into Eq. ~6!, whered(•) is the Dirac delta function,a1 and
a2 are a pair of complex values from the modulation ch
acteristic andp andq512p are the probabilities of select
ing a1 anda2 . Sincep is a probability, its value is betwee
one and zero.@It is clear from usage when we are referrin
to the binary probabilityp and the density functionp(a).#
Evaluating Eq.~6! with this pdf gives an expression for th
effective complex amplitude of

^a&5pa11~12p!a2 . ~9!

Equation~9! is recognized as the expression for a line a
function of the variablep. For p51, a1 is encoded, forp
50, a2 is encoded and for values ofp between one and
zero any value lying on the line segment betweena1 anda2
can be encoded. This geometric interpretation~see Fig. 5!

Fig. 5 Geometry of pseudorandom biamplitude encoding. Any de-
sired value ac between the two available modulation values a1 and
a2 can be encoded by pseudorandom encoding.4
2456 Optical Engineering, Vol. 40 No. 11, November 2001
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can be brought out further by considering that the desi
complex valueac can be expressed in terms of the tw
complex valuesa1 anda2 as

ac5~ l 2a11 l 1a2!/ l , ~10!

where l 1 is the distance betweenac and a1 ,l 2 is the dis-
tance betweenac and a2 , and l 5 l 11 l 2 . Clearly, the
lengths can be chosen so that the desired valueac can be
realized by the average~or effective! value ^a&. As Fig. 5
shows, only the range of values betweena1 anda2 can be
realized. Values on the same line that are outside the
segment cannot be realized by PRE because this w
require that the probabilityp either is greater than 1 or les
than 0, which is not possible for a probability. Equations~9!
and~10! suggest the following encoding formula for bina
SLMs: For a given value ofp, the desired complex value
ac5^a& is represented~i.e., encoded! by a single randomly
selected value

a5a1 if 0<s<p
~11!

a5a2 if p,s<1,

wheres is a uniformly distributed random number betwe
0 and 1. This encoding formula would be repeated for e
pixel, each time with a new, independently selected rand
number.

The preceding analysis and geometric interpretation
binary PRE provides insight into PRE for various contin
ous and quantized modulation characteristics. The anal
can be used to determine the PRE encoding range for v
ous modulation characteristics. The range is found by co
bining the ranges encoded by each possible pair of va
from the SLM characteristic.16 Because the binary encod
ing algorithm has the fewest constraints, the maximum p
sible range of values~a convex set! is found by this proce-
dure. Figure 6~a! shows the convex region~shaded! that is
bounded by the three possible binary encodings4 a12a2 ,
a22a3 anda32a1 . This is the range of possible comple
values that can be realized with three quantized value
modulation. Also the circular shaded region represents
range over which fully complex valued functions can
encoded. A minimum of three noncollinear modulation v
ues are required to obtain fully complex encoding by PR
Note that ternary encoding is similar to Burckhard
method~Fig. 3! in that the average value encoded by te
nary PRE is the vector sum

ac5^a&1pa11qa21ra3 , ~12!

where the probabilities of selectinga1 , a2 anda3 have total
probability

p1q1r 51. ~13!

In Burckhardt’s method in Fig. 3, the three vectors a
present simultaneously, while in ternary PRE in Fig. 6~a!
the three vectors are only present in an average or vir
sense. Furthermore, the constraint of Eq.~13! leads to a
different encoding range in Fig. 6~a! than for Burckhardt’s
method in Fig. 3~b!.
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Cohn: Fundamental properties of spatial . . .
5 Blended Encoding Algorithms

The various approaches to encoding can be combined,
bridized or blended to achieve finer control and improv
performance of encoding algorithms. Similar to Juda
MDE method, these new algorithms can also be fine tu
for improved performance by adjusting a few parameter
review the blended minimum distance pseudorand
encoding17–19 ~MD-PRE! and the modified17 MD-PRE
~mMD-PRE!, which are both single pixel encoding algo
rithms. I also present recent results on blending error di
sion ~ED! with PRE ~ED-PRE! ~Ref. 20!, which is not a
full SBWP single pixel encoding algorithm. Blending PR
with MDE or ED provides a way to overcome the limite
encoding range of PRE and still achieve the properties
nonspiky, white background noise. In fact, the blending
algorithms usually produces significant improvements
the fidelity of the spectrum/diffraction pattern over eith
encoding algorithm individually. After an introduction t
the algorithms, I will present simulations that demonstr
the improvements due to blending. References 17 and
present experimental demonstrations of some of these
codings as well.

Figure 6~b! illustrates the difference between MD-PR
and mMD-PRE. It is specifically shown for a ternary SLM
The desired values inside the triangular region are enco
by ternary PRE. The first approach for encoding the val
outside the region was to map the desired value to the c
est available modulation value. This corresponds to c
ventional MDE. There is a second possibility that could
considered a minimum distance mapping. This would be
map the desired value to the closest value that can be
coded by PRE and then pseudorandom encode that v
This corresponds to the modified minimum distance m
ping in Fig. 6~b!. Figure 7 provides additional informatio
on the various encoding methods for the ternary SLM. F
ure 7~a! shows that for MDE the mapping corresponds

Fig. 6 Ternary pseudorandom encoding showing (a) PRE encoding
and fully complex range,4 and (b) distinction between MD-PRE (con-
ventional) and mMD-PRE (modified) for a ternary SLM (Ref. 17).
-

-

d

-

-
.dividing the complex region into three decision region
Magnitude scaling of the complex values provides no eff
on this mapping. Rotating the data by a phase angle
change the performance; however, it has little effect on
test functions that are used in the simulations presen

Fig. 7 Encoding methods (a) MDE, (b) PRE, (c) MD-PRE, and (d)
mMD-PRE and respective simulated far-field intensity patterns for
(e) MDE with g5`, (f) PRE with g50.5, (g) MD-PRE with g
50.80, and (h) mMD-PRE with g50.95. To bring out the back-
ground noise the maximum grayscale value (full white) is 30% of the
average intensity of the 49 spots. Approximately 403107 resolution
cells of the full 1283128 NRB are shown.17
2457Optical Engineering, Vol. 40 No. 11, November 2001
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Cohn: Fundamental properties of spatial . . .
here, since they are nearly uniformly distributed in ang
Figure 7~b! shows the PRE encoding range and the
scribed circle~radiusg50.5! represents the fully comple
encoding range. The desired complex values can be sc
to fit inside a smaller circle, but this increases the encod
error and the noise in the diffraction pattern. Figure 7~c!
represents the MD-PRE algorithm. It is a combination
Figs. 7~a! and 7~b! with MDE used only when PRE is no
possible. In Fig. 7~d! MDE is replaced with mMDE. The
figure also indicates MDE regions. For the desired value
these regions mMDE is identical to MDE.

Figures 7~e! to 7~h! are the simulated diffraction pattern
~for a desired 1283128 pixel modulation function! that re-
sult from using the corresponding encoding methods
Figs. 7~a! to 7~d!. The intensity pattern desired is a 737
array of equal intensity spots on a negligible background
noise. For MDE@Fig. 7~e!# the pattern includes a very pro
nounced pattern of spikes. These are harmonics of the
sired pattern and are due to the systematic mapping of
method, which is similar to hard limiting in communicatio
systems~which produces intermodulation products at su
and difference frequencies.! PRE@Fig. 7~f!# produces a no-
ticeable, but on average uniform, noise background. M
PRE@Fig. 7~g!# has features of both MDE and PRE. The
is both a white noise background and noise spikes, tho
both are weaker than either MDE or PRE individually. Wi
mMD-PRE @Fig. 7~h!# the noise pattern is nearly identic
in intensity and the noise spikes are at the level of the no
and nearly invisible to the eye. Each image shown has b
optimized to produce the best combination of uniform
tensity spot arrays@minimum nonuniformity ~NU!# as a
function of the amplitude scale factorg. For these ‘‘fidel-
ity’’ metrics mMD-PRE usually produces the best perfo
mance. Figure 8 demonstrates the improvement and sh
how these metrics depend on the scale parameterg. The
improvements are easier to see for the four-phase than
the ternary SLM because it covers more of the comp
plane, which reduces the encoding error. For the minim
value of g shown in the plot, each curve corresponds
PRE and forg5`MD-PRE is equivalent to MDE. Both
the MD-PRE and mMD-PRE have a maximum value
SPR~signal to peak noise ratio—average intensity of the
spots to maximum noise spike! and a minimum value of
NU ~nonuniformity—relative standard deviation of the 4
spots! at a specific value ofg. Achieving the best perfor-
mance with intermediate values ofg demonstrates im-
proved performance of mMD-PRE and MD-PRE ov
MDE and PRE individually. In one respect, MDE is op
mal. This is that it produces the highest possible diffract
efficiency.22 However, this is at a sacrifice in fidelity. Direc
design procedures23 that require various global optimiza
tion algorithms can predistort24 complex valued functions
in ways that compensate for the nonuniformity in MDE, b
this is numerically intensive.23

ED has proven to be an effective way to improve t
appearance of halftone prints.25 It has also been applied i
slightly modified form to continuous and quantized pha
only modulators.26 Figure 9~a! illustrates the encoding
method for a continuous phase-only SLM. The valueb at
specific pixel is encoded by MDE to produce the SL
modulationa and the mismatch error«. This value plus
values from other nearby pixels is filtered by a convoluti
2458 Optical Engineering, Vol. 40 No. 11, November 2001
d

-
e

n

s

r

kernel ~say a 232 kernel! to produced and then added to
the desired valueac to produce the next value ofb that is
again encoded by MDE. The adjacent image is the sim
lated diffraction pattern for ED. The filtering of the mis
match causes the noise pattern to be spatially separ
from the desired pattern and the nearest neighbor enco
values to be correlated. As with the group oriented meth
ED does not maximize fidelity over the NRB of the SLM
Perhaps ED can be tuned or blended to produce hig
fidelity patterns. ED, because of its similarity to MDE
works even if the desired values are scaled so thatg is
greater than unity. An example of encoding whenb exceeds
unity is shown in Fig. 9~b! together with the resulting pat
tern wheng is increased from 1@in Fig. 9~a!# to 1.5. This
increases SPR from less than 4 originally to 12 across
entire NRB. Figure 9~c! illustrates an MD-PRE algorithm
Inside the unit circle a biamplitude PRE method is used a
MDE ~i.e., the kinoform! is used for desired values outsid
the unit circle. The resulting diffraction pattern has an S
of 47 and an NU of 5.8% forg51.4. However, the blended
ED-PRE method in Fig. 9~d!, has an SPR of 53 and an NU
of 3.3% that is even better than MD-PRE and ED alo
The blending procedure is more complicated than previ
methods in that there are now two scale parameters to

Fig. 8 Performance of blended algorithms as a function of the
scaling/blending parameter g for ternary phase and quad phase
phase-only SLMs (Ref. 17).
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Cohn: Fundamental properties of spatial . . .
varied to optimize performance. These areg ~as before! and
x, which scales the PRE encoding error. The reason for
scaling is that PRE automatically diffuses encoding er
into the noise background, thus it should not also be
fused forward by ED. Values ofb outside the unit are
mapped as in Fig. 9~b!. The result shown in Fig. 9~d! cor-
responds to usingg51.3 andx50.6. Careful comparison
of the pattern in Fig. 9~a! to the one if Fig. 9~d! shows that
the background noise pattern is weakest in the center o
image and that the ED-PRE noise pattern appears to
diffused version of the more spiky noise pattern in F
9~a!.

Fig. 9 Encoding method and corresponding simulated far-field in-
tensity patterns for (a) ED, g51; (b) ED, g51.5; (c) MD-PRE, g
51.4; and (d) ED-PRE, g51.3, x50.6. Images are saturated so
that the maximum grayscale value (full white) is 3% of the average
intensity of the 49 spots.20
e
a

6 Diffraction Efficiency Versus Usable SBWP

To this point the SLM has been modeled as an array
equally spaced point sources of pitchD in bothx andy. For
this model, it is possible to devise encoding algorithms t
produce desired diffraction patterns anywhere within
NRB. However, pixels of finite aperture~which were
briefly discussed in Sec. 2! introduce a frequency-
dependent rolloffR( f x , f y) that multiplies the spectrum o
the array of point sources. A consequence of the rollof
that the intensity of the spectrum may be too low in po
tions of the NRB to be practically useful and thus the use
SBWP is reduced to a value less than the NRB. Making
pixel apertures as small as possible minimizes rolloff b
essentially all the light is blocked by the dead space
tween pixels. Maximizing the pixel apertures so that the
is no dead space~i.e., 100% fill factor! is 100% efficient on
the optical axis (f x5 f y50) but the frequency-dependen
rolloff is maximized for frequencies off the optical axis
This section further illustrates these considerations by
termining the useful SBWP from maps of frequenc
dependent diffraction efficiency for pixelated and spatia
continuous, 2p phase-only SLMs. The effects of differen
fill factors and pixel aperture shapes for the pixelated SL
are compared with each other and also with spatially c
tinuous SLMs that are subject to limited phase resolutio

Frequency-dependent diffraction efficiency is most
rectly appreciated by evaluating the percentage of the i
dent energy that can be diffracted into a single spot fr
the SLMs approximate implementation of a linear pha
ramp. More involved analyses are possible for determin
the maximum efficiency possible forspecific diffraction
pattern designs, e.g., various arrays of spots.27,28 The sim-
pler single-spot analysis nonetheless provides consider
insight into the efficiency-limited SBWP of various SLMs

6.1 Pixelated SLMs

The linear phase ramp for a pixelated SLM is approxima
by first modding the linear phase ramp into the 2p range of
the SLM ~similar to a blazed grating! and then quantizing
the phase values to produce a set of stair steps. If the pe
of the ramp 1/f x is an integer of the pixel pitchDx ~or more
generallym/ f x5nxDx , wherenx andm are integers!, then
the diffraction efficiency can be directly calculated
h( f x)5ua1( f x)u2, wherea1( f x) is the Fourier coefficient of
the fundamental frequencyf x ~i.e., the position the spot is
steered from the optical axis!. Extending this approach to
2-D functions g(x, y) that represent the SLM transmi
tance, the diffraction efficiency can be explicitly written a

h~ f k , f y!5U f xf yE
0

1/f xE
0

1/f y
g~x, y!

3exp@2 j 2p~ f xx1 f yy!#dxdyU2

, ~14!

where (f x , f y) is the fundamental frequency. The integral
also recognized as the Fourier transform of one period
the function, which can often be used to simplify the eva
ation of Eq.~14!.
2459Optical Engineering, Vol. 40 No. 11, November 2001
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Cohn: Fundamental properties of spatial . . .
For an SLM having rectangular pixels of aperture widt
in x and y of w5wx5wy , and pitch ofD5Dx5Dy ~in
keeping with discussions on square NRB in Sec. 2!, Eq.
~14! for diffraction efficiency evaluates to

hsq~ f x , f y!5~w/D!4@sinc~w fx!sinc~w fy!#2, ~15!

where sinc(x)5sin(px)/(px). The termpsq5w/D is often
referred to as the duty cycle andAsq5(w/D)2 is often re-
ferred to as the areal fill factor. For a unity duty cycle ea
sinc2 function gives efficiency that is identical to that fo
1-D quantized29 and stepped phase gratings.30 For the case
of a two phase level grating@i.e.,nx52 or f x51/(2D)#, the
efficiency is (2/p)250.405, which is the identical result fo
a 50% duty cycle square wave. For a 2-D 100% fill fac
binary grating thehsq(61/2D,61/2D)5(2/p)450.164.
For the examples developed in this section, I consider
efficiency at these corner Nyquist frequencies to be
small to be practically useful. For this particular SLM I wi
assume that 40.5% is the minimum required efficien
Plotting isocontours of Eq.~15! for a 100% fill factor in
Fig. 10~a! shows that the 40.5% level is nearly circular wi
a radius of 0.5/D. @The nearly circular contours are som
what surprising given the rectangular separability of E
~15!; however, plotting the contours out to higher freque
cies does reveal the rectangular structure.# The useful
SBWP is thenp/(2D)2 or 0.79B where B51/D2 is the
NRB. The useful SBWP is still 3 to 7 times greater than
2-pixel31 and 3-pixel3 group-oriented encoding algorithm
~see Sec. 2!. The fact that 21% of the NRB is considered
be nonuseful in this design example does motivate furt
research into single pixel encoding algorithms that distr
ute as much of the encoding error into the small nonusa
areas as possible. ED and ED-MDE are a step in this di
tion because they do place a good deal of the light in
nonusable areas; however, much of the error, even for
does also appear in the usable area.

Currently the highest fill factor for pixelated SLMs
;84% for a device in development.32 The on-axis effi-
ciency from Eq.~15! would be 70%. As mentioned, th
rolloff is slower than for the 100% fill factor SLM, as il
lustrated in Fig. 10~b!. The slower rolloff is reflected in tha
the efficiency at a radial frequency off r51/(2D) is ;0.34
or only 84% of the efficiency of that for the 100% fill facto
SLM. If one chooses to continue using the 40.5% minim
efficiency requirement then this SLM has a useful SBWP
nearly 0.6B.

It is interesting to compare the 84% fill factor, squar
pixel SLM with a circular pixel SLM. For circular pixels o
diameterd, Eq. ~14! then evaluates to

hci~ f r !5@p~d/2D!2jinc~d fr !#
2, ~16!

where jinc(x)52J1(px)/(px), and whereJ1(x) is the first
order Bessel function of the first kind. Ford5D, the fill
factor Asq5p(d/2D)250.78 and the on-axis efficiency i
62%. Comparing the circular-pixel with the square-pix
SLM in Fig. 10~b! shows that on-axis the efficiencies a
most different and that the curves are nearly identical o
much of the plot away from~0, 0!. If the designer can
accept the lower diffraction efficiency on-axis, then the c
2460 Optical Engineering, Vol. 40 No. 11, November 2001
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cular pixels provide the advantage of greater uniformity
diffraction efficiency across the usable SBWP. A seco
advantage for the SLM designer is that the increased d
space provides additional area for opaque electrodes
addressing circuitry.

6.2 Spatially Continuous SLMs

When might it be preferred to use a spatially continuo
SLM over a pixelated SLM? Equation~14! can be used to
help answer this question in terms of useful SBWP. Lig
valves are typical examples of continuous SLMs. With
the limits of scalar diffraction theory, an ideal light valv
could diffract a spot to any angle with 100% efficienc

Fig. 10 Contours of equal diffraction efficiency for phase-only
SLMs: (a) SLM with square pixels of width w5D (thick curves),
spatially continuous SLM with circularly blurred phase of blur diam-
eter d5D (thin curves), and two specific curves for spatially continu-
ous SLMs with phase blurred by squares of two different widths, and
(b) SLM with square pixels of w50.915D (solid curves) and SLM
with circular pixel of diameter d5D (dotted lines). The spatial fre-
quency coordinates and ranges in (a) are identical to those shown
for (b) and correspond to one-quarter of the NRB.
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Cohn: Fundamental properties of spatial . . .
However, phase-only light valves have limited phase re
lution, which leads to frequency dependent diffraction e
ciency. A useful model for this effect is to convolve th
desired phase modulation with a phase point spr
function33 of the SLM. The desired modulation is a 2p-
modded linear phase ramp~as was used in the model of th
pixelated SLM! that is then convolved with a point sprea
function to produce the blurred phase. The blurred phas
then evaluated using Eq.~14!.

First consider the convolution of a one-dimension
phase ramp of period 1/f x and a blurring function
w21rect(x/w). The resulting blurred phase is composed
two linear phase ramps, one with the original~say positive!
slope 2p/ f x over a duty cycle of 12w fx of the period and
a second with a~negative! slope over the remainder of th
period. Evaluation in Eq.~14! gives

hbl~ f x!5~12w fx!
2. ~17!

The efficiency is identical to the square of the duty cycle
the 1-D blaze which suggests that the negative sloped
ment does not contribute to the fundamental diffraction
der. This conclusion provides insight into the evaluati
with 2-D blur functions. I will specifically consider squar
and circular blurs.

Linear phase ramps vary in only one direction,u. The
2-D blur functions, when convolved with a phase ram
replace the desired phase values with the average ph
The average phase is identical to the value of desired p
ramp over a duty cycle of 12w(u) f r , wherew(u) is the
width of the blur function projected into the directionu. For
a circular blurw(u)5d results in a diffraction efficiency
that is a circularly symmetric function of radial frequenc
For a square blur function of widthw, the efficiency can be
written

hbs~ f x , f y!5@12w~ f x1 f y!#2. ~18!

Example diffraction efficiency contours of both types
blurring are presented in Fig. 10~a!. The circular curves
~thin lines! are for a circular blur function of diameterd
5D. Note the 40.5% efficiency curve has a radius
0.36/D so with this degree of blurring the usable SBWP
0.4B. A single curve (h50.25) for the square blur function
of width w5D is also plotted. Note that the curve com
close to intersecting the circularly blurred 40% efficien
curve atu5p/4. The lower efficiency for the rectangularl
blurred curve is reasonable when one recognizes that
rectangular blur function is longer by 1.414 in the 45 d
direction. A rectangular blur function withw50.51D pro-
duces a 40.5% efficiency curve that is almost tangent to
40.5% efficiency curve for the 100% fill factor, pixelate
SLM. The useful SBWP for this degree of rectangular bl
ring apears to be nearly the same as that for the 100%
factor SLM. Also note that a circular blur function withd
50.73D has nearly an identical 40.5% curve and use
SBWP as the 100% fill factor SLM. The reason for sele
ing the particular values ofw5d5D for plotting are dis-
cussed in the next subsection.
-

e.
e

e

l

6.3 Continuous SLMs Addressed by Pixelated
Signals

Spatially continuous SLMs and light valves are often a
dressed by spatially discrete signals. Video monitors
composed of scan lines and frequently the video source
frame grabber. The evaluation of the mapping from a p
elated signal to a spatially continuous, phase-blurred S
can significantly complicate the modeling and analys
Fortunately, there is at least one special case that ca
used to gain insight into the combined effect of blurrin
and pixelation. The special case follows from evaluati
the convolution of a blur functionD21rect(x/D) with a
stepped phase function of 100% duty cycle steps and pe
1/f x5nxD. The resulting phase is identical to the phase
a blurred linear ramp with blur widthw5D. Thus with
pixelation along thex andy directions, efficiency~at least
in x and y! can be calculated using Eq.~17! with w5D.
Therefore the Fig. 10~a! curve for the continuous SLM pro
vides the following information on the effect of blurrin
with a pixelated input.

Based on the preceding discussion, the efficiency fow
5D for the rectangular blurring andd5D for circular blur-
ring is identical inx andy directions. The 40.5% efficiency
curve for circular blur in Fig. 10~a! intersects the axes a
0.36/D. This is equivalent to saying that this degree of blu
ring requires that there are at least 2.7 phase steps pe
riod, compared with 2 samples per period for the 100%
factor pixelated SLM, to meet the minimum diffraction e
ficiency. In the limit of zero blur radius, the discretely a
dressed SLM would behave identically to the pixelat
SLM.

Qualitative experience from experimental studies
phase blurring in Refs. 14, 33, and 34 leads me to beli
that the effects of blurring on discretely addressed SL
are quite a bit more severe than this idealized estimate.
real-world SLMs, I suspect that the diffraction efficiency
more severely affected both by both blurring~due to a non-
abrupt, e.g., Gaussian-shaped, blur33! and pixelation~due to
less than 100% fill factors and blurring in the write-sid
monitor!. Despite the idealized nature of the models p
sented in this section, these simple results do provide us
information on the selection of SLM characteristics
achieve good utilization of optical power and SBWP.

7 Summary

A major goal in this review has been to identify metho
that can conveniently encode the desired complex-val
modulation to the SLM. In this way it would be possible
make the most flexible use of the SLM. Certainly, ma
useful optoelectronic systems can be developed using
computed, globally optimal encodings. However, preco
puted solutions are not always possible or practical, es
cially if the processor is required to adapt to a chang
environment in which there is limited prior knowledg
Thus to achieve this degree of flexibility the encoding p
cess must not be a computational bottleneck. Also SL
have a small number of rather costly pixels. To maxim
use of the limited SBWP, methods other than the ea
methods of encoding from the fields of holography a
computer generated holography are required for toda
SLMs. The full NRB can be used by employing metho
2461Optical Engineering, Vol. 40 No. 11, November 2001
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Cohn: Fundamental properties of spatial . . .
that represent one complex value with a single SLM pix
In using full NRB design approaches, the rolloff due
pixel fill factor and other sources of resolution loss sho
be considered, especially when high levels of diffracti
efficiency are required over most of the NRB.

While excellent performance can be obtained by us
modulation design methods that optimize performance
the SLM modulation as a function of all the pixels, the
methods are time consuming and usually cannot be u
on-line in an optical processor. A useful alternative is pix
oriented encoding, which can be calculated in real ti
with simple operations by a serial processor. It is also p
sible to bring the performance of these encoding meth
closer to that of the optimization methods by including
step in which some of the free parameters are adjuste
improve performance within the available computation
budget of the supporting electronics. One hierarchical
proach for such a design system is proposed in Ref. 21

Fundamental properties of SLMs include their inhere
SBWP, their frequency-dependent efficiency and their a
ity to represent complex-valued modulations with some
gree of accuracy through encoding. These properties
important to consider in the design and development
numerous optical computing architectures that use SLM
Fourier transform arrangements.35 Future developments in
the understanding of SLM properties and encoding co
further improve the optical performance and reduce
computational complexity needed to demonstrate real-t
Fourier transform processors that are based on lim
modulation range SLMs.
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